RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 503/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

5 Programming Reference

5.1 Declaration

5.1.1 Variable Declaration
A variable can be declared in the in the
statements for a P(_)U using the ,in a

The data type of the variables to be declared is specified by the

For example, the declaration of simple variables begins with "VAR" and ends
with "END_VAR".

For other types, refer to

The variable type keywords can be supplemented by
which also consist of keywords.

Example: "RETAIN" (VAR RETAIN).

A variable declaration has to follow these rules:

Syntax:

< >{ <Address>}. <DataType> {:=<Initialization>};
The sections in curly brackets {} are optional.

Identifier The identifier is the name of the variable. The points listed below have to be
considered when assigning an identifier. For further recommendations for as-
signing an identifier, see

¢ An identifier may not contain any spaces or special characters.

° Case is not taken into consideration for identifiers, i.e. "VAR1", "Var1"
and "var1" identify the same variable.

e Underscores are recognized (i.e. "A_BCD" and "AB_CD" are treated as
two different identifiers), but a sequence of multiple underscores is not
permitted.

¢ The length of an identifier and its significant parts are unlimited.

e Also note the rules for "Multiple use of identifiers (namespace, validity
ranges)".

Multiple use of identifiers (namespaces, validity ranges):
— Anidentifier may not be locally used twice.
— Anidentifier may not be identical with a keyword.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

504/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference — An identifier may be used globally more than once. Thus, a local
variable may have the same name as a global variable. In this
case, the local variable takes precedence locally.

- can have the
same name as a variable defined in another GVL.

In this context, please note the following functionalities that extend
the standard with regard to the namespace/validity range of varia-
bles that were not available in IndralLogic 1.x:

1. Operators that apply globally, "global scope":

An instance path that begins with "." always opens a global
namespace. If a local variable (e.g. "ivar") has the same
name as a global variable (e.g. ". ivar"), the global variable
is addressed.

2. The name of a "global variable list" can provide a unique defi-
nition for the namespace for the variables it contains. Thus,
variables with the same name can be declared in different
global variable lists and still be addressed uniquely by using
the list name as prefix.

Example:
globlistl_ivar := globlist2.ivar;

//ivar from GVL globlist2 is copied to 1ivar
in GVL globlistl

3. Variables defined in the global variable list of a library integra-
ted into the project can be addressed uniquely based on the
syntax

"<NameSpace library>._<GVLname>.<VariableName>"

The next point includes further information on the namespace
for libraries.

Example:
globlistl_ivar := libl_globlistl.ivar

//ivar from GVL globlistl in library libl is
copied to ivar in GVL globlistl.

— When a library manager is added to a library, a
is also defined.

Thus, a library manager or a library variable can be uniquely ad-
dressed with

"<NameSpace library>.<BlockName]VariableName>"

If libraries are nested, note that the namespaces for all participat-
ing libraries have to be entered in sequence.

Example: If Lib1 is referenced by Lib0, the function block "fun" in
Lib1 is addressed using

"LibO.Libl.fun"

ivar -= Libl.fun(4, 5);//return value from fun 1is
copied to the variable ivar in the project

If "Publish all IEC symbols in the referencing project" has been en-
of the referenced library "Lib1",
fun can also be addressed directly using "Lib0.fun".

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 505/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

AT <Address> Using the keyword"AT", the variable can be linked directly to a

In function blocks, variables with incomplete address information can also be
declared. To use such a variable in a local instance, a corresponding entry
for this variable has to be in the "variable configuration".

Data type: valid optionally extended by an
ll:=<
= Note that is possible. To enter

declarations more quickly, use the

can be used to affect
code generation in the declarations of an object.

5.1.2 Recommendations for Assigning an ldentifier
Recommendations for Assigning an Identifier, General Information

Identifiers are assigned during the of variables (

and when POUs
and visualizations are created (function blocks: functions, function blocks,
programs).

, the following rule is
recommended for achieving the greatest possible consistency when assign-
ing names:

Variable Names <Identifiers>

The naming of variables should be related to the Hungarian notation.

A short, meaningful description should accompany each variable, the "basic
name". The first letter of each respective word in a basic name should be
written in upper case, the others in lower case (example: FileSize).

If necessary, the compilation file can also be generated in other languages.

"Prefix(es)" comresponding to the variable data type are attached to the front
of the basic name in lower case letters.

Data type Lower limit Upper limit Information con- Prefix Comment
tent
BOOL FALSE TRUE 1 bits xD
b Reserved

1) For Boolean variables, x was purposely chosen as a prefix to provide a separation
from BYTE on one hand, and on the other, to accommodate the perspective of the
IEC programmer (cf. address %/X0.0).

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

506/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Programming Reference

Data type Lower limit Upper limit Information con- Prefix Comment
tent
BYTE 16#00 16#FF 8 bits by Bit string, not for
arithmetic opera-
tions
WORD 16#0000 16#FFFF 16 bits W Bit string, not for
arithmetic opera-
tions
DWORD 16#00000000 16#FFFFFFFF 32 bits dw Bit string, not for
arithmetic opera-
tions
LWORD 16400000000 64 bits Iw Bit string, not for
00000000 164#FFFFFFFF FF grithmetic opera-
FFFFFF tions
SINT -128 127 8 bits si
USINT 0 255 8 bits usi
INT -32.768 32.767 16 bits i
UINT 0 65.535 16 bits ui
DINT -2.147.483.648 2.147.483.647 32 bits di
UDINT 0 4.294.967.295 32 bits udi
LINT 268 263 -1 64 bits li
ULINT 0 2% -1 64 bits uli
REAL 32 bits r
LREAL 64 bits Ir
STRING s
WSTRING ws
TIME tim
TIME_OF_DAY tod
DATE_AND_TIME dt
DATE date
ENUM 16 bits/32 bits e 0...32767
POINTER p
ARRAY a
Example

bySublndex: BYTE;
sFileName: STRING;
udiCounter: UDINT;

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL.2GPRO*V12-AP01-EN-P Bosch Rexroth AG 507/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

In case of nested declarations, the prefixes are attached to each other in the
order of the declaration:

Example
pabyTelegramData: POINTER TO ARRAY [0..7] OF BYTE;

Function block instances and variables of user-defined data types have a
short identifier for the FB or data type names as prefix.

Example

cansdoReceivedTelegram: CAN_SDOTelegram;

TYPE CAN_SDOTelegram : (* prefix: sdo *)
STRUCT
wlndex:WORD;
bySubIndex:BYTE;
byLen:BYTE;
aby: ARRAY [0..3] OF BYTE;
END_STRUCT
END_TYPE

Local constants (c) begin with the constant prefix "c¢" and an additional under-
score "_", followed by a type prefix and the variable name.

Example
VAR CONSTANT

c_uiSynclID: UINT := 16#80;
END_VAR

For global variables (g) and global constants (gc), an additional prefix and un-
derscore are added to the library prefix.

Examples:

VAR_GLOBAL
CAN_g_1iTest: INT;
END_VAR
VAR_GLOBAL CONSTANT
CAN_gc_dwExample: DWORD;
END_VAR

Variable Names in IndraLogic 2G Libraries

Variable names in Indralogic 2G are formed as in the description above, ex-
cept that global variables and constants do not require library prefixes, since
this function is replaced by the namespace.

Example

g_iTest: INT; // Declaration
CAN.g_iTest // Usage, call in program

User-Defined Data Types (DUT)

Structures:

The name of each structure data type consists of the library prefix (in the ex-
ample: "CAN"), an underscore and a short, meaningful description of the
structure (in the example: "SDOTelegram").

The corresponding prefix for variables created with this structure should fol-
low as a comment directly after the colon.

Syntax:

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

508/697 Bosch Rexroth AG

Programming Reference

.

e Att. al Clien

Servicio d

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

<Libraryprefix>_<ldentifier>
Example

TYPE CAN_SDOTelegram : (* prefix: sdo *)
STRUCT

wlndex:WORD;

bySublIndex:BYTE;

byLen:BYTE;

abyData: ARRAY [0..3] OF BYTE;
END_STRUCT
END_TYPE

Enumeration values:

Begin with the library prefix (in the example: "CAL") followed by an under-
score and the identifier in upper case letters.

Syntax:
<Libraryprefix>_<ldentifier>

= In past versions of IndraLogic, ENUM values > 16#7FFF have led
to errors, since they were not automatically converted to INT. For
this reason, ENUMs should always be defined with the correct
INT values.

Example

TYPE CAL_Day :(
CAL_MONDAY,
CAL_TUESDAY,
CAL_WEDNESDAY,
CAL_THIRSDAY,
CAL_FRIDAY,
CAL_SATURDAY,
CAL_SUNDAY);

END_TYPE

// Declaration:
VAR

eToday: CAL_Day;
END_VAR

User-Defined Data Types (DUT) in IndraLogic 2G Libraries

The library prefix is not used for DUT names in IndraLogic 2G libraries, since
its function is replaced by the "namespace".

Likewise, enumeration values are also defined without a library prefix:
Example (from a library with namespace CAL):
Type definition

TYPE Day :(
MONDAY,
TUESDAY,
WEDNESDAY,
THIRSDAY,
FRIDAY,
SATURDAY,
SUNDAY) ;

END_TYPE

Declaration:

eToday: CAL.Day;

Use in the application:
IF eToday = CAL.Day.MONDAY THEN

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL.2GPRO*V12-AP01-EN-P Bosch Rexroth AG 509/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

POUs (Functions, Function Blocks, Programs, Actions...) Programming Reference

Functions, function blocks and programs consist of the library prefix (in the
example: "CAN"), an underscore and a short, meaningful name of the POU
(in the example: "SendTelegram").

As with the variables, the first letter of each respective word in a basic name
should be written in upper case, the others in lower case. It is recommended
to use a combination of a verb and a noun in the POU name.

Example

FUNCTION_BLOCK CAN_SendTelegram //prefix: can

The declaration contains a short description of the function block as a com-
ment.

In addition, all inputs and outputs have comments.

For function blocks, the corresponding prefix for created instances should
come right after the name as a comment.

Actions do not contain a prefix; only actions to be called internally only by the
function block itself begin with prv_ (private).

For compatibility reasons to previous versions of IndraLogic, each function
has to have at least one transfer parameter.

Extemal functions may not use structures as return values.
POUs in Indralogic 2G Libraries

The library prefix is not used for POU names in IndraLogic 2G libraries, since
its function is replaced by the namespace.

Method names are created as action names.

Possible inputs for methods have to include comments. Likewise, the decla-
ration should contain a short description of the method.

For methods, there are no limitations with regard to their implementation
among external and internal libraries.

Interfaces should begin with the letter "I", e.g. "ICANDevice"

Identifiers for Visualizations

I Note that a visualization does currently not have the same name
as another function block in the project, since this would lead to
problems when switching visualizations.

5.1.3 Variable Initialization

is 0. User-defined initializa-
tion values can also be entered in the declarations for each variable and
each data type.

The user-defined initialization starts with the assignment operator ".=" and
can consist of anv valid ST axnrassinn refer tn

Thus, the initial value can be defined using constants, other variables or func-
tions.

The programmer has to ensure that a variable "x" used to initialize another
variable, "y" is also declared.

Examples for valid variable initializations.

VAR
varl:INT := 12; // Integer variable with initial value 12

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

510/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Programming Reference

X I INT :
y o INT :

13 + 8; // Initial value is defined by a term of constants
x + fun(4); // Initial value is defined by a term

// that contains a function call;

// in these cases please observe the order!

// Not described in the IEC61131-3

z - POINTER TO INT := ADR(y); // standard: Initial value is defined by an address function;
// However, in this case the pointer is not initialized
// during an online change!

END_VAR

A description on the initialization can be found under
[J

1

= Starting from compiler version 3.3.2.0, variables from thr
are always initialized before the local var-
iables of a POU.

5.14 Any Expressions for Variable Initialization

A variabhle can bhe initialized with anv desired

Other variables from the same namespace as well as function calls can also
be used.

If a variable is initialized with another variable, the other variable should also
be initialized.

Examples for valid variable inifializations:

VAR
X = INT = 13 + 8;
y : INT := x + fun(4);

//Warning: The pointer is not initialized in the case of an online change!
z - POINTER TO INT := ADR(Y);
END_VAR

5.1.5 Declaration Editor

The declaration editor is a text editor for the variable

Usually, it is used with language editors.
Also refer to

5.1.6 "Auto Declare" Function

Under Tools » Options > IndralLogic2G » Smart coding a setting can be
made to open the "Auto Declare" dialog automatically as soon as a variable
that is not declared is entered in the statements into an editor and <Enter> is
pressed.

DOK-IWORKS-L2GPRO V12—AP01-!EN-P . Bosch Rexroth AG 511/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

Options I

¥ General A
{3 CamBuilder IV Peclare unknown variabh ity {Autabieclare)

E— Messages/noies IV List companenis after typing a det ()
Et Indidl o 26 ™ List companents immesiately when typi

e I Butamatically st sslection in cross reference view
~FBD_ LD and IL exdior
- Device edior
- Text ediar
- Synitax Highghting
- SFCedior
- Indrab.ogic 1.x Caneiter
[#- Indralogic
-- Technology
(- MLC =l

0k I Cancel Apply Reset Help

Fig.5-1: "SmartCoding” options
The "Auto Declare" dialog supports the variable

TSRS X

Scoper Name: Typet '
vz i 1] i Tl)
| Main [BRC Control: Loge: ¥ | _ ‘f_] |zmn

[~ comsTANT Inputl ;l
[T RETAIN

¥ PERSISTENT =

Fig.5-2: "Aufo Declare” dialog

The dialog to declare a variable can also be opened explicitly using the
command (usually found in the "Edit" menu).

This command or the shortcut <Shift>+<F2> also opens the dialog, even if a
variable that is already declared is selected in the statements of an editor.

A description of automatic declaration is found under

Short Form Mode

In the declaration editor, as in other text editors for variable declaration, the
"short form mode" for the input is supported.

I The statement in the editor does not support the "short form
mode".

This mode is enabled if a declaration line is completed with the shortcut
<Ctrl>+<Enter>.

In the short form mode, use short forms to enter a declaration instead of typ-
ing in all the details.

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

512/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference The following short forms are supported:
e All identifiers except the last identifier in a line become variable identifi-
ers of a declaration.

e The declaration data type is specified by the last identifier in the line.
The following applies here:

BorBOOL resultsin BOOL
lor INT results in INT

R or REAL results in REAL
Sorstring resultsin STRING

e |f a data type cannot be specified using these rules, BOOL is automati-
cally used as the data type and the last identifier in the line is not used
as data type (see below: example)1).

e Depending on the type of declaration, each constant entered becomes
an initialization or a string length specification (see below, examples (2)
and (3)).

® An address (as in %MD12) is automatically extended with the AT attrib-
ute (see below, example (4)).

e A text following a semicolon (;) becomes a comment (see below, exam-
ple (4)).

e All other characters in the line are ignored (see below, exclamation point
in example (5)).

Examples:
Short form Resulting declaration

(1 O A: BOOL;

(2 ABI2 A B:INT :=2;

(3) STS2; A ST:STRING(2); // A string
string

4) X%MD12R5; XAT %MD12: REAL :=5.0; // Real Number
Real Number

(5) B! B: BOOL;
5.1.8 AT Declaration

can be linked to a specific input, output or
memory address of the control configured in the Project Explorer.
Syntax:
<ldentifier> AT <Address>: <DataType>;

that cor-
responds to the currently active control configuration in the Project Explorer.

This allows to give a meaningful name to the address. Modifications with re-
gard to the incoming or outgoing signal may be carried out only at one posi-
tion (e.g. in the declaration).

Note the following when assigning a variable to an address:

e Write access to variables to which an input was assigned is not possi-
ble.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

vAR

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 513/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

e AT declarations can only be carried out for local and global variables,
not for input and output function block variables.

° If AT declarations are used with structure or function block components,
all instances use the same memory which is as using static variables in
classic programming languages such as "C".

e The memory layout of structures depends on the target system.
Examples:

counter_heat7 AT %QX0.0: BOOL;
lightcabinetimpulse AT %IX7.2: BOOL;
download AT %MX2.2: BOOL;

= If Boolean variables are assigned to a BYTE, WORD or DWORD
address, they assign TRUE or FALSE to an entire byte, not only
to the first bit after the offset!

= I/0O modules of the same type on the respective slot and in the
same sequence are required for automatic address generation re-
sulting in the same assignment and thus to the connection of the
correct inputs and outputs.

Please check this carefully if the control is replaced.

Note that a variable can also be assigned to an address when configuring the
modules.

519 Keywords Keywords can be entered in upper case, lower case and mixed.

The following character strings are reserved as keywords, i.e. they cannot be
used as for variables or POUs:

ACTION (only used in export format)

BY

iao.ne

514/697 Bosch Rexroth AG

Programming Reference

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

CONTINUE, page 396
COS, page 605

Date, page 555

DINT, page 554

DIV, page 571

DO, page 394

DT, page 555
DWORD, page 554
ELSE, page 393
ELSIF, page 393
END_ACTION (only used in export format)

END_FUNCTION (only used in export format)

END_FUNCTION_BLOCK (only used in export format)

END_PROGRAM (only used in export format)

END_STRUCT
END_TYPE

JMPC
JMPCN
LD

LDN

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 515/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

LN, page 603 Programming Reference
LOG, page 604

LREAL, page 554

LT, page 584

LTIME, page 555

LWORD, page 554

MAX, page 582

METHOD, page 45,

OF

R
READ_ONLY
READ_WRITE
RET

RETC
RETCN

SIZEOF

ﬁ4u!u)&:‘ :
c G

N Ao

Lomcy

516/697 Bosch Rexroth AG

Programming Reference

 ViGo, s.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

SQRT, page 603
ST
STN

TO

TYPE

VAR_ACCESS (only used in special circumstances, depending on hardware)

XOR
XORN

In addition, all conversion operators as listed in the input assistance are trea-
ted as keywords.

5.1.10 Local Variables (VAR)

All local variables of a function block are between the keywords
VAR and END_VAR. External access to local variables is not possible.

VAR can be extended by an

ROBAVIGS, S.A.

RODAMIENTOS VIGO, S.A.

www.rodavigo.net +34 986 288118

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 517/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference
Example
VAR

iLocl:INT;
END_VAR

5.1.11 Input Variables (VAR_INPUT)

Variables used as input variables for a function block are between
the keywords VAR_INPUT and END_VAR.

This means that when calling the function block, a value can be transferred to
these variables.

VAR_INPUT can be extended by an
Example

VAR_INPUT
iInl:INT;
END_VAR

5.1.12 Output Variables (VAR_OUTPUT)

Output variables in functions and
methods:

All output variables of the function block are declared between the keywords
VAR_OUTPUT and END_VAR.

This means that the values of these variables can be returned to the function
block called. They can be queried and used there.

VAR_OUTPUT can be extended by an
Example

VAR_OUTPUT
IOuUtl:INT;
END_VAR

According to the IEC 61131-3 standard, functions and methods can have ad-
ditional outputs. These have to be assigned when the function is called:

Example

fun(ilnl = 1, iIn2 := 2, i0utl => ilLocl, i0Out2 => ilLoc2);

The return value of the function "fun" is additionally calculated and transfer-
red to its outputs.

5.1.13 Input/Output Variables (VAR_IN_OUT)

Variables used as input/output variables for a function block are be-
tween the keywords VAR_IN_OUT and END_VAR.

= For input/output variables, the value of the transferred variable is
changed directly ("Transfer as pointer", Call by reference).

That means that the input value for such variables may not be a
constant.

Thus, the VAR_IN_OUT variables for a function block cannot be
read or described using

<FBinstance>_<InputOutputVariable>
from an external location.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

518/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Programming Reference Example

VAR_IN_OUT
iInOutl:INT;
END_VAR

5.1.14 Global Variables (VAR_GLOBAL)

Variables, constants or remanent variables that should be known across the
entire project can be declared as global variables.

= A variable declared locally in a function block and with the same
name as a global variable has priority in the function block.

= Starting from compiler version 3.3.2.0, variables from thr
are always initialized before the local var-
iables of a POU.

The variables are declared locally between the keywords VAR_GLOBAL and
END_VAR.

VAR _GLOBAL can he extended hv an

A variable is detected as a global variable if a dot is placed in fron of the vari-
able name, e.g. ".iGlobVar1".

= For more detailed information on the multiple usage of variable
names, on the operator for the global namespace "." and name-
spaces, see

Global variable lists can be used to manage global variables in a project.

A "GVL" can be added as an object in the Project Explorer using the
command.

5.1.15 Temporary Variables (VAR_TEMP)

The temporary variable functionality is an extension with regard to the IEC
61131-3 standard.

Temporary variables are re-initialized every time the function block is called.
VAR_TEMP declarations can only be made in programs and function blocks.

The variables can only be accessed in the statement of the program or func-
tion block.

The variables have to be declared between the keywords VAR_TEMP and
END_VAR.

5.1.16 Static Variables (VAR_STAT)

The static variable functionality is an extension with regard to the IEC
61131-3 standard.

Static variables can be used in function blocks, functions and methods. They
have to be declared between the keywords VAR_STAT and END_VAR and
are initialized the first time the respective function block is called.

Static variables can only be accessed in the namespace in which they are

they keep
their value even after the function block is exited again. They can be used as
counters for function calls for example.

VAR_STAT can be extended by an

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 519/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

5.1.17 External Variables (VAR_EXTERNAL) Programming Reference

External variables are imported into a function block.

The variables have to be declared locally between the keywords VAR_EX-
TERNAL and END_VAR.

= If a VAR_EXTERNAL is not declared in a GVL, an error message
is output.
= It is not required in IndraLogic to declare variables as external.

The keyword in intended to ensure compliance with IEC 61131-3.

Example

VAR_EXTERNAL
iVarExtl: INT :=12;
END_VAR

5.1.18 Attribute Keywords for Variable Types

The following keywords can be used to add the corresponding attributes in

the of variable types.
RETAIN: See of type RETAIN.
PERSISTENT: See of type PERSISTENT.

CONSTANT: See

5.1.19 Access Variables
#Ht In preparation #HH#

5.1.20 Remanent Variables (VAR RETAIN, VAR PERSISTENT)
Remanent variables can retain their value for the entire program runtime.

They are declared as pure "retain variables" or "persistent variable" or as a
combination of retain and persistent.

Each has its own memory area used for management.

The type of declaration chosen specifies the degree of "resistance" a rema-
nent variable has in case of a reset, download or computer reboot.

In practice, the combination of both types is most often requested (PERSIS-
TENT).

= When an IndralLogic1.x project is opened, the declarations of re-
tain variables remain effective and are not changed, but the dec-
larations of persistent variables have to be revised or recreated.

An individual global variable list has to be created for the project!
Refer to

For further information, refer to

Retain variables The management of variables declared as retain variables depends on the
target system: Usually, their are managed in their own memory space. They
are identified by the keyword RETAIN in a function block or in a global varia-
ble list (GVL) in the IndraLogic project.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

520/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Programming Reference Example

VAR RETAIN
iReml : INT;
END_VAR

Retain variables keep their value after an uncontrolled shutdown or in re-
sponse to the online command as well
as after switching the control off and on normally (reboot).

When the program restarts, the saved values are used for further processing.
All other variables are re-initialized in this case, either with their initialized val-
ues or with default initializations.

Use case:

A counter in a production facility that is to continue counting after power fail-
ure.

However, retain variables are re-initialized at a a

or a new program download.

The retain property can be combined with the persistent property. To do this,
refer to the below.

= If a local variable is declared as RETAIN in a program, this exact
variable is saved in the retain area (like a global retain variable).

If a local variable is declared as RETAIN in a function block, the
entire instance of this function block is saved in the retain area (all
function block data), although only the declared retain variable is
treated as such.

If a local variable is declared in a function as RETAIN, it has no
effect! The variable is not saved in the retain area! If a local varia-
ble is declared as PERSISTENT in a function, it has also no ef-
fect!

= The memory space for retain and persistent variables is limited to
127 KB each.

Persistent variables Currently, persistent variables are treated as persistent retain variables. In
this case, the values are kept even at a control reboot. See below.

Persistent variables are identified by the keyword "PERSISTENT"
(VAR_GLOBAL PERSISTENT). They are only re-initialized during a reboot or
of the control.

In contrast to the retain variables, they keep their value after a download. A
use case for "persistent retain variables" might be a counter for operating
hours which is supposed to continue counting after a power failure or down-
load. See below

Persistent variables are treated as follows and thus different as in
IndralLogic1.x:

Persistent variables can ONLY be declared in a special global variable list of
the object type that is part of an application.
There is only "ONE" such list per application.

= From V3.3.0.1, a declaration with "VAR_GLOBAL PERSISTENT"
has the same effect as a declaration with "VAR_GLOBAL PER-
SISTENT RETAIN" or "WVAR_GLOBAL RETAIN PERSISTENT".

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

ROBAVIGS, S.A.

RODAMIENTOS VIGO, S.A.

www.rodavigo.net +34 986 288118

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 521/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Overview table on the behavior of
remanent variables

Programming Reference

Like retain variables, persistent variables are managed in their own memory
space

Example

VAR GLOBAL PERSISTENT RETAIN
iVarPersl : DINT;
bVarPers : BOOL;

END_VAR

= Currently, only global persistent variables can be created

The target system has to provide one separate memory space per application
for the persistent variable list.

Each time the application is loaded, the persistent variable list on the control
is compared with that in the project. The variable list on the control is identi-
fied by the application name among others. In case of inconsistencies, the
user is prompted to initialize all persistent variables before the download. In-
consistencies occur due to renaming, deletion or other modifications to exist-
ing persistent variable declarations.

I Thus, carefully consider each change in the declaration part of
the persistent variable list and the effects on a re-initialization
subsequently asked.

New declarations can only be added to the end of the list, but they are identi-
fied as new while loading. Thus, re-initializing the entire list is not necessary.

After online command |VAR |VAR RETAIN |VAR PERSISTENT
VAR RETAIN PERSISTENT
VAR PERSISTENT RETAIN
Reset warm - X X
Reset cold - - X
Reset origin - - -
Loading (= download) |- - X
Online change X X X
Reboot control - X X
X Value is kept
- Value is re-initialized
Fig.5-3: Overview table on the behavior of remanent variables

A WARNING Dangerous state due to PERSISTENT data in

the remanent data memory

The device description can define that the PERSISTENT data be mapped in
the remanent data memory. In this case, the values are kept even at control
reboot!

Make absolutely sure that the PERSISTENT data cannot cause damage at a
reboot.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

522/697 Bosch Rexroth AG

Programming Reference

RODAMIENTOS VIGO, S.A.

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

= The maximum memory space for retain and persistent variables
is limited to 127 KB each.

5.1.21 Constants (VAR CONSTANT), Typed Constants

CONSTANT

Typed constants (typed literals)

Constants are identified by the keyword CONSTANT. They can be declared
locally or globally.

Syntax:

VAR CONSTANT

<ldentifier> : <Type> := <initialization>;
END_VAR

Example

VAR CONSTANT
c_iConl:INT:=12;
END_VAR

In the description of the , a list of possible
can be found.

Typed constants can also be used:

Normally, the smallest possible data type is used when calculating with IEC
constants. If another data type is to be used, this can be done with constants
of a specific data type (typed literals) to which a specific type is assigned.

In this case, the constants do not have to be declared explicitly as "VAR
CONSTANT" in the declaration. The constants are provided with a prefix that
specifies the type:

It is written as follows:
Syntax:

<Type>#<Literal>

<Type> indicates the desired data type.
Possible inputs:

BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD,
LINT, ULINT, LWORD, REAL, LREAL.

The type has to be written in upper case letters.

<Literal> indicates the constant. The input has to match the data types speci-
fied under <Type>.

Example

iVarl:= DINT#34 ;

If the constant cannot be transferred to the target type without loss of data,
an error message is output.

Constants of a specific data type can be used anywhere normal constants
can be used.

= Furthermore, the system is also provided with
and corresponding constants: TIME#,T#, DATE#, D#,
TIME_OF_DAY#, TOD#, DATE_AND_TIME#, DT#

and corresponding con-
stants CHAR#, WCHAR#, STRING#, WSTRING#.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

ROBAVIGS, S.A.

RODAMIENTOS VIGO, S.A.

www.rodavigo.net +34 986 288118

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 523/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Constants in online mode

Programming Reference
If the default setting "Replace constants" is selected, constants in online
mode in the declaration or monitoring window are indicated by a preceding

symbol E in the value column. In this case, they cannot be accessed by
forcing or writing for example.

= Replace constants: This option is selected by default. This
of

scalar type (not for strings, arrays and structures). In online mode,

constants are labeled in the orin the

by a symbol preceding the value.
In this case, access via an ADR operator, forcing and writing is
not possible. If the option is disabled, the constant can be ac-
cessed, but the computing time increases.

5.1.22 Variable Configuration (VAR_CONFIG)

The variable configuration can be used to "map" function block variables to
the process image, i.e. to assign the variables to the device I/Os without hav-

at the variable declaration in
the function block. In this case, the address is assigned centrally in a global
VAR_CONFIG list below the application for all function block instances of the
application.

Incomplete addresses are assigned to the function block variables in the dec-
laration between the keywords "VAR" and "END_VAR" for this purpose.

These addresses are identified by a "™".
Synlax:

<Name> AT %<1]Q>* : <Data type>;

Example for the assignment of incompletely defined addresses:

FUNCTION_BLOCK locio
VAR
xLocIn AT %1*: BOOL := TRUE;
xLocOut AT %Q*: BOOL;
END_VAR

Two local I/O variables - a local input variable (%I*) and a local output varia-
ble (%Q*) - are defined here.

The final definition of the addresses is then made in the "variable configura-
tion" in a global variable list:

the type "global variable list" (GVL) into the Project Explorer be-
low the desired application.

In this GVL, enter the declarations of the instance variables with
the exact addresses between the keywords VAR_CONFIG and
END_VAR.

The keyword VAR_GLOBAL is replaced by the keyword
VAR_CONFIG.

Q command to insert an object of

The instance variables have to be specified with the complete instance path
in which the individual POU and instance names are both separated by a dot
each.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

5241697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Programming Reference whise class (input/

output) matches with that of the incomplete specification (%I1*, %Q*) in the
function block. The data type has to match as well.

Syntax:

<instance variable path> AT %<Il]Q><location> : <data type>;

Configuration variables whose instance paths are invalid since the instance
does not exist, are reported as errors.

But an error is also output if there is no address configuration present for an
instance variable declared with an incomplete address.

Example for a variable configuration:

The following usage of the function block "locio" exists in a program (see ex-
ample above).

Declaration:

PROGRAM PIcProg
VAR
lociovVarl: locio;
lociovVar2: locio;
END_VAR

Then, a correct variable configuration would look as follows for example:
Configuration:

VAR_CONFIG
PIcProg.locioVarl.xLocln AT %IX1.0 : BOOL;
PIcProg.locioVarl._xLocOut AT %QX0.0 : BOOL;
PIcProg.lociovVar2._.xLocln AT %IX1.0 : BOOL;
PIcProg.locioVar2._xLocOut AT %QX0.3 : BOOL;
END_VAR

= Modifications of variables directly assigned to the 1/O addresses
are displayed immediately in the process image, while modifica-
tions of variables "mapped" using a variable configuration are dis-
played when the task responsible is completed.

5.1.23 User-Defined Data Types

In addition to the standard data types, user-defined data types can also be
used.

On declaration and initialization, refer to the description of
(Data Unit Type).

5.1.24 Extendable Functions, PARAMS
#HH In preparation ##H#

5.1.25 FB_init, FB_reinit Methods

FB_init The "FB_init" method replaces the INI operator used in IndraLogic 1.x.
A method named FB_init is a special for a function block.

It can be declared explicitly but is always created implicitly as well. Thus, it
can be controlled for every function block.

The FB_init method contains an initialization code for the function block
based on the declarations in the declaration part of the function block.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

ROBAVIGS, S.A.

RODAMIENTOS VIGO, S.A.

www.rodavigo.net +34 986 288118

Servicio de Att. al Cliente

DOK-IWORKS-IL.2GPRO*V12-AP01-EN-P Bosch Rexroth AG 525/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

FB_reinit

Programming Reference

If the init method is also explicitly declared, the implicit initialization code is
added to the explicitly created method.

The programmer can then add further initialization code.

= When the execution reaches the user-defined initialization code,
the function block has already been completely initialized using
the implicit initialization code.

The FB_init method is called for all declared instances after a download. At-
tention: For online changes, the most recent values overwrite the initialization
values.

To call in sequence in case of inheritance, refer to: See

Also refer to the option to call a function block method automatically after the
initialization via FB_init: Attribute

Interface of the FB_init method:

METHOD fb_init : BOOL
VAR_INPUT
bInitRetains: BOOL; // if TRUE, the Retain variables are initialized
// (warm start / cold start)
bInCopyCode : BOOL; // if TRUE, the instance is copied
// into the Copy-Code (Online Change)

END_VAR

The return value is not used.

= An "fb_exit" method and the resulting processing sequence can
also be used. See .

User-defined input:

Additional inputs can be defined in an FB_init method. These have to be as-
signed in the declaration of the function block instance.

Example of an init method for a function block called "serialdevice":

METHOD fb_init : BOOL
VAR_INPUT
bInitRetains : BOOL; // Initialization of Retain variables
bInCopyCode : BOOL; // Instance is copied into the Copy-Code
nCOMnum : INT; // additional input: Number of the COM
// interfaces that is leading
END_VAR

Declaration of the function block "serialdevice":

COM1 : serialdevice(nCOMnum:=1);
COMO : serialdevice(nCOMnum:=0);

If a method is declared with the name "FB_reinit" for a function block in-
stance, it is called if the instance is copied (for example at an online change
after changes were made in the function block declaration).

The method re-initializes the instance module generated by the copy code. A
re-initialization may be desirable, since after copying, the original instance
data is written on the newly created instance, but the original values are the
desired ones. Note that the FB_reinit method has to be explicitly declared in
contrast to the FB_init method. If the basic implementation of the function

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

526/697 Bosch Rexroth AG

Programming Reference

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

block should be re-initialized, the FB_reinit has to be called explicitly for this
function block.

The FB_reinit method has no inputs.
To call in sequence in case of inheritance, refer to:

5.1.26 FB_exit Method

The method named "FB_exit" is a special method for a function block. It has
to be declared explicitly. There is no implicit declaration.

The "exit" method - if available - is called for all declared instances of the
function block before a new download or during online changes for all new or
deleted instances.

Interface of the FB_exit method: There is only one obligatory parameter:
Interface of the FB_exit method:

METHOD fb_exit : BOOL
VAR_INPUT
bInCopyCode : BOOL; // if TRUE, the exit method is called
// to leave the instance, which is copied
// afterwards (Online Change).

END_VAR

See also the and the following execution se-
quence:

1. exit method: exit old instance
old_inst._fb_exit(bInCopyCode := TRUE);
2. init method: initialize new instance:

new_inst.fb_init(blnitRetains:= FALSE,bInCopyCode:=
TRUE) ;

3. Copying the function block values (copy code):
copy_fTub(&old_inst, &new_inst);
In case of inheritance, the following call sequence applies additionally (the
following is assumed for the POUs named in this list as example).
SubFB EXTENDS MainFB and SubSubFB EXTENDS SubFB):
Call sequence:

fbSubSubFb.FB_Exit(...);
fbSubFb.FB_Exit(...);
fbMainFb_.FB_Exit(...);
fbMainFb.FB_Init(...);
fbSubFb.FB_Init(...);
fbSubSubFb.FB_Init(...);

for FB_reinit:

fbMainFb.FB_reinit(...);
fbSubFb.FB_reinit(...);
fbSubSubFb.FB_Init(...);

5.1.27 Pragma Statements
Pragma Statements, Overview

A pragma statement is used to affect the properties of one or more variables
with regard to compiling or precompiling (preprocessor). That means that a
pragma affects the code generation.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 5271697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

For example, a pragma statement can specify if a variable is initialized, dis-
played in online mode, added to the or kept invisible in the library
manager. During the compilation, can be forced.

that specify how a variable is to be interpreted under certain con-
ditions can be used. These conditional pragmas can also be entered as
"compiler definitions" in the of an object.

A pragma can be inserted in a separate line or together with the code in an
implementation or declaration line. In the FBD/LD/IL editor, call the "Add
jump label" command first and then the "Label:" entry in the label text field
has to be replaced by the corresponding pragma statement.

= 1. If a label and a pragma should be used, enter the pragma
first and then the jump label.

2. A pragma statement is given in curly brackets.

3. Lower-case letters are currently required for pragma state-
ments.

4. If the compiler cannot interpret the statement text, the entire
pragma is treated as a comment and is not read.

However, a waming is output.

Synfax:

{ <instruction text> }

The opening bracket may be placed directly after a variable name. Opening
and closing brackets always have to be placed in the same line.

Depending on the type and content of a pragma, it affects either:

e the line in which it is located

e orall following lines until it is canceled by a corresponding pragma or
e until the same pragma is executed with other parameters or

o the end of the file is reached.

A file is a: declaration part, statement part, global variable list, type declara-
tion.

Possible pragma types:

#Ht In preparation ###. Pragmas as in IndraLogic 1.x.

Message Pragmas

Message pragmas can be used to force messages to be output in the mes-
sage window during the compilation (project build).

The pragma statement can be inserted into a separate or an existing line in
the text editor of a POU and considered when the project is compiled.

There are four types of message pragmas:

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

-

e
RCBAVIES, S.A.

¢
e

(S Y

RODAMIENTOS VIGO, S.A.

528/697 Bosch Rexroth AG

Programming Reference

Attribute Pragmas

+34 986 288118

Servicio de Att. al Cliente

www.rodavigo.net

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Pragma Message type

{text 'textstring'} »:E:'
Text : The text specified, "Textstring", is output.

{info 'textstring'} »i\.-"'
Information : The text specified, "Textstring", is output.

{warning digit 'text- &
string'} Waming ¢ The text specified, "Textstring", is output.
|In preparation ###. The specified number indicates

the waming level (between 1 and 5).

In contrast to a "data type global "
warning is locally defined for the current position.

, the

{error ‘textstring'} Error € The text specified, "Textstring", is output.

IS

For the message types "information", "warning" or "error mes-

command to move to the
source position of the message, i.e. the position at which the
pragma is positioned in the POU.

Declaration and implementation in the ST ediftor:

VAR
ivar : INT; {info "TODO: should get another name"}
bvar : BOOL;
arrTest : ARRAY [0..10] OF INT;
i: INT;
END_VAR
arrTest[i] :=
ivar:=ivar+l;
{warning "This is a warning"}
{text "Part xy has been compiled completely"}

arrTest[i]+1;

[uid
| ! Diesetiptinn | Elerment | Path]

L - Build started. Application: DCC_Contral_01 Applioation - Projeoct 0

;‘) T he application iz up to date Project: o

é) Pracompilstion: TODO: should get another nams PleProg [DEC_Contal_01: Logic: Application] Project: ProjsetiB | Line 3 [Decl]

é) Frecompilation: Thiz iz-a warning PlcProg [DEC_Cantol_01: Logic: &pplication] Proect: Project18 | Line 3. Column 1 [Impl]
-;i) Precompilation: Part wy bias been compiled completely PlcProg [DEC Control_01: Logic: &pplication] Project: Prejectis | Line 4, Colurmn 1 (Impl)
:é) TODE; should get another name PlePiog [DCC_Contiol_01: Logic: &pplication] Project Project1B | Line 3 [Decl)

"‘3 Thiz is a warhing PleProg [DCC Conteol_O1: Lagic: Application] Project: Praject 8 | Lire 3, Columin 1 (Impl]
5) Part vy Fas beerroompiled completely PlcProg [DCC_Contol_01: Logic: Application] Froject: Project1B | Ling 4, Column 1 (Impl)
@) | Compile complete - 0 enore, 1 warnings Pigject |

Fig.5-4. Example for an oufput in the message window

Attribute Pragmas, General Information

Attribute pragmas can be added to a signature to influence the compilation or
precompilation. All variables in the declaration is one signature.

There are user-defined attributes used with
for a description, but also re-
fer to the predefined attribute pragmas listed below:

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P

Bosch Rexroth AG 529/697

Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

ISy

1. A pragma statement is given in curly brackets.

2. Lower-case letters are currently required for pragma state-

ments.

3. If the compiler cannot interpret the statement text, the entire

pragma is treated as a comment and is not read.
However, a waming is output.

Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute

User-Defined Attributes

Any desired user-defined or application-defined attribute can be assigned to
a function block, a type definition or a variable. This attribute can be promp-
ted before compiling the project using

Synfax:

{attribute "attribute"}

This pragma always affects the current line or, if it is located in a separate
line, the following line.

An attribute can be assigned to the following objects:

530/697 Bosch Rexroth AG

Programming Reference
Example: POUs, actions

Example: variables

Example: types

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Alttribute 'vision' for function funt:

{attribute “vision"}
FUNCTION funl : INT
VAR_INPUT

i - INT;
END_VAR
VAR

END_VAR

Attribute ‘docount’ for variable ivar:

PROGRAM Plc_Main

VAR
ivar:INT; {attribute "docount”};
bvar:BOOL;

END_VAR

Attribute ‘atype' for data type DUT_1:

{attribute "atype"}
TYPE DUT_1 :
STRUCT

azINT;

b:BOOL;

END_STRUCT

END_TYPE

To use conditional pragmas, page 546.
Attribute 'call_after_init'

This pragma can be used to define a method to be implicitly called after the
initialization of a function block instance.

For this purpose, the attribute has to be added to the function block as well
as to the method (due to reasons of performance).

and after the variable
values of an initialization expression became valid in the instance declaration.
This functionality is supported from the compiler version >= 3.4.1.0.

Synfax:

{attribute "call_after_init"}

Example
With the following function block definition.

{attribute "call_after_init"}
FUNCTION_BLOCK FB
. <functionblock definition>

and the method definition:

{attribute "call_after_init"}
METHOD FB_Afterlnit
. <method definition>

... @ declaration such as:

inst : FB = (inl := 99);

... I8 implemented in the following code processing.

inst.FB_Init();
inst.inl = 99;
inst.FB_AfterInit();

Thus, the FB_Afterlnit can react on the user-defined initialization.

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 531/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Attribute 'displaymode’ Programming Reference

The display mode of an individual variable can be defined using this pragma.

This specification overwrites the global setting for the display of all monitoring
variables made using the commands in the display mode submenu (located
in the debug menu by default).

The pragma has to be located in the line above the line which contains the
variable declaration.

Synlax:

{attribute “displaymode”:= "<displaymode>"}

The following definitions are possible:
for a display in binary format:

{attribute "displaymode”:="bin"}
{attribute “displaymode”:="binary"}

for a display in decimal format:

{attribute "displaymode”:="dec"}
{attribute "displaymode”:="decimal "}

for a display in hexadecimal format:

{attribute "displaymode”:="hex"}
{attribute “displaymode”:="hexadecimal"}

Example

VAR

{attribute "displaymode”:="hex"}
dwVarl: DWORD;

END_VAR

Attribute 'enable_dynamic_creation'
#HH In preparation #H#
Attribute 'external_name'

The pragma specifies the name of an extermnally implemented function or
function block in the runtime environment.

It can only be used for functions and function blocks.
Syntax:

{attribute “external_name":="<implementation_name>"}

Example

FUNCTION_BLOCK MyFunctionBlock

Attribute 'expandfully’

The components of an array used as input variable for referenced visualiza-
tions in the of the visualization can become visi-
ble using this pragma.

Synlax:

{attribute "expandfully"}

Example:

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

532/697 Bosch Rexroth AG

Programming Reference

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Visualization visu is to be inserted into a frame in the visualization visu_main.

arr is defined as input variable in the "visu" interface editor and is thus availa-
ble for for assignments in the property dialog of the frame in visu_main.

To provide the individual components of the array in this "Property" dialog,
the 'ExpandFully' attribute has to be added to the interface editor of visu di-
rectly in front of arr.

Declaration in the inferface editor of "visu":

VAR_INPUT

{attribute "expandfully"}
arr - ARRAY[O..5] OF INT;
END_VAR

Propertias

B % 8l

Froperty: Walue]
Staling
Interiar rotation
= Relative moverent
i+ Movament botkomright
* State variables
tn_blsatropic
mrbﬁm
= =
@]
[1]
(2]
[31
=1
(=]

=

Inpuks

Fig.5-5:
Attribute 'global_init_slot'

"Properties” dialog for the frame in "visu_main”

This pragma can only be used for signatures.

The sequence for the initialization of variables from global variable lists is not
specified from the very beginning. Sometimes, however, specifiying such a
sequence is necessary for example if the variables of a list of variables de-
pend on another list.

In this case, the pragma for specifying the sequence during the global initiali-
zation can be used.

Syntax:

{attribute "global_init_slot™ := "<value>"}

The placeholder <value> has to be replaced by an integer value determin-
ing the significance in the initialization sequence.

The default value is 5000.

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 533/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference
A lower value causes an earlier initialization. If several signatures have the
same significance for the attribute 'global_init_slot', the sequence of their initi-
alization remains unspecified.

Example: The example project contains two global variable lists, GVL_1 and
GVL_2:

[T

Y L_

[

Lo

ﬁ] Library Manager

Fig.5-6: Two global variable lists
The global variable "A" is part of the global variable list GVL_1.

{attribute “"global_init_slot® := "300"}
VAR_GLOBAL

Az INT:= 1000;
END_VAR

The initialization values of the variables "B" and "C" from GVL_2 depend on
the variable "A".

Initialization values of the variables "B" and "C":

{attribute “"global_init_slot® := "350"}
VAR_GLOBAL

B : INT:=A+1;

C : INT:=A-1;
END_VAR

If the attribute 'global_init_slot' of the global variable list GVL_1 is set to 300 -
that is the lowest initialization value in the example - it is ensured that the ex-
pression "A+1" is well defined when "B" is initialized.

Attribute ‘hide'

Use the pragma to prevent that variables or even entire signatures become
visible in the "List component" functionality, in the input assistance or in the
declaration part in online mode.

Only the variable directly following the pragma becomes invisible.
Synfax:

{attribute "hide"}

To hide all local variables of a signature, use the attribute

Example:
Function block myPOU with attribute "hide":

FUNCTION_BLOCK myPOU
VAR_INPUT
a:INT;
{attribute "hide"}
a_invisible: BOOL;
a_visible: BOOL;
END_VAR
VAR_OUTPUT
b: INT;
END_VAR
VAR
END_VAR

In the main program, two instances of the function block myPOU are defined:

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

534/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference Two instances of the function block myPOU in the program Plc_Main.

PROGRAM Plc_Main
VAR

POUL, POU2: myPOU;
END_VAR

While the input value for POU1 is implemented for example, the "List compo-
nent" function that opens when jogging "POU1" displays (in the implementa-
tion part of PLC_PRG) the variables "a", "a_visible" and "b", but not the hid-
den variable "a_invisible".

Attribute 'hide_all_locals'

Use this pragma to hide local variables of a signature in the display of the
"List component" functionality and the input assistant of the online monitoring
in the declaration part.

The effect of this attribute is identical to that of the usage of the attribute
on each local variable.

Synfax:

{attribute "hide_all_locals"}

Example:
The function block myPOU is implemented using the attribute:
Function block myPOU with attribute.

{attribute "hide_all_locals"}
FUNCTION_BLOCK myPOU
VAR_INPUT
a:INT;
END_VAR
VAR_OUTPUT
b:BOOL;
END_VAR
VAR

c,d:INT;
END_VAR

In the main program, two instances of the function block myPOU are defined:
Instances of the function block

PROGRAM Plc_Main
VAR

POUL, POU2: myPOU;
END_VAR

While an input value for POU1 is implemented, the input assistance (Intelli-
sense), which opens when typing "POU1" (in the statements of Plc_Main),
displays the variables "a" and "b", but not the hidden local variables "c" or "d".
Attribute 'initialize_on_call'

This pragma can only be used for input variables.

An input variable of a function block that has this attribute is initialized every
time the function block is called. If an input expects a pointer and if it was re-
moved during an online change, this input is set to ZERO.

Syntax:

{attribute "initialize_on_call"}

Attribute 'init_namespace'

A STRING or WSTRING variable provided with this pragma is initialized with
the current namespace.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL.2GPRO*V12-AP01-EN-P Bosch Rexroth AG 535/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

To use this pragma, the additional attribute has to be
used for the STRING variable.

Synlax:

{attribute "init_namespace"}

Example

PROGRAM PLC_PRG

VAR

{attribute "init_namespace"}
{attribute "noinit"}
newString: STRING;

END_VAR

The variable "newString" is initialized with the current namespace, e.g.
"PLC1.app1.PLC_PRG.newString".

Attribute 'init_on_onichange'

If the pragma is applied to a variable, it is initialized during each

Synlax:

{attribute "init_on_onlchange"}

Attribute 'instance-path’

The pragma can be applied to a local string variable.

The string variable is initialized with the Project Explorer path of the POU to
which it belongs. This can be useful for error messages.

The application of this pragma requires the application of the attribute
to the associated POU and the application of the additional
attribute to the string variable itself.

Syntax:

{attribute "instance-path"}

Example: Function block "POU" with all necessary attributes
Declaration of the function block POU:

{attribute "reflection"}
FUNCTION_BLOCK POU

VAR
{attribute "instance-path"}
{attribute "noinit"}
str: STRING;

END_VAR

In the main program, one instance, "myPOU", of the function block POU is
defined:

Instance creation and usage:

PROGRAM Plc_Main
VAR
myPOU:POU;
myString: STRING;
END_VAR
myPOUQ) ;
myString:=myPOU.str;

The initialization of the instance myPOU contains the string variable "str"
which contains the path of the instance myPOU.

In the example "DCC_Control.Application.Plc_Main.myPOU" this path is as-
signed to the variable "myString" in the main program.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

ROBAVIGS, S.A.

www.rodavigo.net

RODAMIENTOS VIGO, S.A.

536/697 Bosch Rexroth AG

Programming Reference

Example

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Attribute 'linkalways'

Use this pragma to highlight the belonging object at the compiler. Thus, it is
always included in the compiler information which means that it is always
compiled and loaded to the PLC. The pragma is only effective for POUs and
GVLs located below an application or in libraries below an application.

The compiler option performs the

same.
Syntax

{attribute "linkalways"}

, the highlighted POU
is used as basis for the selectable variables of the symbol configuration.

The attribute 'linkalways' is used to implement the global variable list
"GVLMoreSymbols":

Global variable list "GVLMoreSymbols”

{attribute "linkalways"}

VAR_GLOBAL
g_iVarl: INT;
g_iVar2: INT;

END_VAR

This code provides the variables of "GVLMoreSymbols" as selectable sym-
bols.

+34 986 288118

Servicio de Att. al Cliente

Synﬂ:ol:fﬂﬂt_l:nmml: Logic: Application] - X
Avadable varigbles Refrash Selected variables
Available Nems Recass Rights Selecked Trems | Access Rights
= 1) Variables =) variables
= i SMoresymibals 2> = WEoresymbas
¥ o_ivarl L ?o_Varl 7 Sy
¥ g_ivarz N > P o ivar2 k'l
4 ___] JeConfig_Globals + EJ MatianProg
+ (W] 0 & + i UservarGlobal
+ =] PlcPrag ® 4 psta Types
+ (@ Usesvarclobat)
+ 8 Data Types S5
T Shiow ibrariesin available varishles Instance Path: 1 NS S S YA =]
Display invalid wariables Copw Instance Path
Thanged symbef canfigur stion will be transferred with the next download or anline cthangs

Fig.5-7
Attribute 'monitoring’

Ediitor of the symbol configuration

In online mode, a can be monitored either using the

ora

Monitoring can be enabled by inserting the 'monitoring' attribute pragma into
the line above the definition of the property. Subsequently, name, type and
value of the variables are displayed in the online view of the function block
using the property orin a . Values to force the prop-
erty variables can also be prepared there.

There are two different ways to display the current value of the "properties"
variables.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

.

e Att. al Clien

Servicio d

Bosch Rexroth AG 5371697

Programming Reference

Decide for each case which attribute pragma is suitable to display the desired
value. It depends on whether further operations with the variables are imple-

mented in the property.
1.

Pragma {attribute 'monitoring':='variable"}

An implicit variable is created for the property that receives the current
"properties" value whenever the application calls either the "Set" or
"Get" method. The value of these implicit variable is shown in the moni-

toring.
Syntax:

{attribute "monitoring”:="variable"}

[CHl

i Project Explorer
2 Projat1h

- [H DEC_Contral_M

logiz: Application’ (b1IDCC_Contial 01 Logie Application] | ¥ % Ge{DCC_Contol 07: Lagic: Applcation b1 seconds] | = X
[) General madule folder 1 FUNCTION BLOCK fhl & = LoV k-
2 VAR_INPUT B z EHD VAR ¥
Lngic_ END VAR 'Er = ¥
B b.ﬁppﬁ‘-ﬁ;ﬂ:\?asbhai £ g—m‘]u““ ' T 1 secomds:- milli / looa: -
) Library Manages = & VAR B {3)
=5 151 7 willi: TE; (1) g: =
B "E; secon‘d_a_-_ . 6 END VAR |;| 4z |;[_
w ‘I I-.’-.r i ¥ = - = = »
= _ SellDEC_Contiol_01: Logic: Application: fb1: sec ¥
4l | = 2 ﬂ
3§ Task Configurafion — e —] . 5 — :
A Onboard 1/0 seeands{DEC. Contiol O1: Logic: Application: (1] | St e
3 lﬂ Irline |40 1 attribiyve pouyroring “wariable!)| v WLLYL = s=donds * 0003
o Prafibuig/M PROPERTY seconds ¢ INT (2) !
WMot Used (4)
Q) Function block "fb1" with the local variable 'milli’
) Property 'seconds' with attribute pragma
Q) "Get" of the 'seconds' property
4 "Set" of the 'seconds' property
Fig.5-8: Example of the 'seconds’ property prepared for monitoring

The figure below shows the program with the test variable 'testvar' and the
declaration of the function block instance in the upper part.

The implementation includes in line 1: "Set" method and in line 2: "Get" meth-

od.

The figure below shows the monitoring including the display of the 'seconds’
property.

$.
() novhues.s..

RODAMIENTOS VIGO, S.A.

538/697 Bosch Rexroth AG

Programming Reference

www.rodavigo.net

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

-ﬂ ImageS5* [1:1] (Background)

PleProglDCC_Contiol_01: Logic: Application]
FROGRAN PlcProg
VER
testvar: INHT;
fhinst: fhi;
ERD YER

Thinat.seconds
testwar := fhinst,seconds:

PlcPiog|DCC_Contiol_01: Logic: Apphcation]

DEC_Control 01 Application.PicProg

Exgession | Type alue | Preparedvalue [=
testvar INT 22 o

= § it fi1 &
¢ il INT 22000 &

seconds INT 2z D

o

o

£]

o

|

=

1
2

fhinst.seconds| 2 H R
testwar[22 | := fhinst.seconds[2z |:[RETURN

Fig.5-9:
2. Pragma {attribute 'monitoring'".='call’}
This attribute can only be used for properties that return only simple da-
ta types or pointers, but no structured types:

The monitored value is obtained by calling the property directly, that
means that the monitoring service of the runtime system calls the "Get"
method.

If operations are implemented on the variables in the "property", the val-
ue can still change!

Example of a monitoring view with the ‘'seconds’ property

Syntax:

{attribute "monitoring®:="call"}

Attribute 'no_check'

The pragma is added to a POU to impede each call of a check function
()-

Since the check functions can affect the processing velocity of the program, it

is reasonable to apply the attribute to function block that have already been
checked or are often called.

Synfax:
{attribute "no_check"}

Attribute 'no_copy'

In general, an requires a reallocation of instance,
e.g. ofa POU.

In this case, the value of the variables in the instance is copied.

However, if the pragma is applied to a variable, a copy of the variable value is
not made. Instead, the variable is re-initialized during an online change.

This can be useful for a local pointer variable that points to a variable that
was just moved due to an online change (which thus also changed the ad-
dress).

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

+34 986 288118

Servicio de Att. al Cliente

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 539/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Syntax: Programming Reference

{attribute "no_copy"}

Attribute 'no-exit'

, the call of this meth-
od can be suppressed for a special instance of the function block by applying
the pragma to the instance.

Synlax:

{attribute "symbol® := "no-exit"}

Example.

The exit method "FB_EXxit" is added to the function block called "POU":

¢ Application
m Library Manager
[E] Ple_Main {FRG)
S
| FE_Exit
W8 Combol configuration
+ [#84 Task Corfiguration

Fig.5-10:

In the main program PLC_PRG, two instances of the function block "POU"
are created:

Declaration of the program PLC_PRG:
PROGRAM PLC_PRG

VAR
POU1 : POU;
{attribute "symbol® := "no-exit"}
POU2 : POU;

END_VAR

The method named "FB_exit" is a special method for a function block. It has
to be declared explicitly. There is no implicit declaration.

The "exit" method - if available - is called for all declared instances of the
function block before a new download or during online changes for all new or
deleted instances.

Interface of the FB_exit method: There is only one obligatory parameter:
Interface of the FB_exit method:

METHOD fb_exit : BOOL
VAR_INPUT
bInCopyCode : BOOL; // if TRUE, the exit method is called
// to leave the instance, which is copied
// afterwards (Online Change).

END_VAR

If the variable "bInCopyCode" is assigned to the value TRUE within POU1,
the "exit" method FB_Exit is called. In contrast, the value of the variable "bIn-
CopyCode" in POU2 has no effect.

Attribute 'no_init'

Variables that have the pragma are not initialized implicitly.
The pragma refers only to the variables declared in direct succession.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

540/697

Bosch Rexroth AG

Programming Reference

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Alfernatives in the syntax:

{attribute "no_init"}
{attribute "no-init"}
{attribute "noinit"}

Example

PROGRAM PLC_PRG

VAR
A - INT;
{attribute "no_init"}
B : INT;

END_VAR

When the respective application is reset, the integer variable "A" is initialized
with 0 again while the variable "B" keeps its current variable.

Attribute 'no_virtual_actions'

This attribute concemns function blocks derived from a function block imple-
mented in the SFC and that use the SFC procedure of this basic class.

The actions called from there show the same virtual behavior as the meth-
ods. That means that the implementations of the actions into the basic class
can be replaced by the derived class with individual, specific implementa-
tions.

However, if the basic class gets the pragma {attribute 'no_virtual_actions'}, its
actions are protected against overoad.

Synfax:

{attribute "no_virtual_actions"}

Example:

The following example shows the function block POU_SFC that creates the
basic class for the derived function block POU_child.

 POU_SFCIDCL_Control_01: Logic: Ap ¥ % | AchvsAction[DCC_Contiol_01: Logic: Application ¥ %
i FUNCTION BLOCK POU_SFC L an_inti=an_intdl; -l
VAR_THFUT - test act:='father action';
EHD ViR E METH{) ;
= 4 VAR ODUTPUT 1
= 5 test meth: STRING:= |
— & Ttest _act: STRING:= '';
=—E] POU_SFCFE] 7 an_int: THT:=0 ;
— |54 Activehiction ¢ EHD VIR
o FaMETH = VR
——E] PlcProg [PRG) 1 VIR ' &
B8 Symbol confioustion 11l - -| -

:g o0 EI _!i% [iguistion 1 I L) ’ METHIDEE_EUNML‘U'I “Logic: &pplication: POL >
[Infnel/0 = 2 1 METHOD METH
—— == Profius/ Imat VAR INPUT =
E=— gy m_m fir m_m

4 e L)
=
Al 7
|e = :
1 test methi= 'Tather method! |-
= =
rt > l‘.]: a '.I".r-

Fig.5-11: Function block POU _SFC with the action "ActiveAction” and the meth-

od "METH"

gy,
% RODAVIEY, S.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 541/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

The exemplary implementation of this sequence is limited to the initial step
followed by only one step with the linked step action "ActiveAction" which as-
signs the output variables and calls the "METH" method.

The "METH" method assigns the string 'father_method' to the "test_meth"
variable in the basic class.

The function block POU_child derives from the function block POU_SFC
(basic class).

@ Project Explorer - 3 %
- -f Fo wirtusl achons
—7 General madule tolde

POU_child[DCC._Control 01: Logic: Application] |
l FI.EI(‘TII]H_HLI](‘H PO child EXTERDS POU_SFC

=[] DCC_Contiol_07 VAR _THPUT
) é:l L':l'g"_' ﬂm_m
= T} Apphcalion VIR _OUTFUT
W setVailGicbal EHD VIR
; | il Libraty Manage: VAR
2] POL_SFC [FE] 7 END VIR
{ = Achivedction 4
Za METH
‘M 1 super* [;
PicProg [PRE))
POU_child [FE]
S5 Activedction
Sy METH
Fig.5-12: Derived function block POU child

POU_Child uses ST as implementation code and is provided with the "Active-
Action" action and the "METH" method.

For the derived class POU_child, the step action is replaced by a special im-
plementation of "ActiveAction" only differing from the original by assigning the
"child_action" string instead of "father_action" to the "test_act" variable.

The METH method, assigning the "father_method" string to the "test_meth"
variable in the basic class, is overwritten in such as way that "test_meth" gets
the "child_method" value.

The main program "PlcProg" calls an instance of the function block
"POU_child" called "Child". As expected, the value of the strings reflect the
call of action and method of the derived class:

POU_SFCIDCC_Control_07: Logic: &pplication] PlcProg[DCC_Control_01: Logic: Application]| ¥ X
DCC_Control_01.Application.PlcProg
Expression Tvpe Walue Prepared value
= & chid POL_child
"% test_meth STRIMNG ‘child_method"
" test_ack STRIMNG ‘child_action'
"% an_int INT 5604
Fig.5-13: Main program "PlcProg”

The "no_virtual_actions" attribute precedes the basis
{attribute "no_virtual_actions"}
FUNCTION_BLOCK POU_SFC. ..

a different behavior can thus be observed: the implementation of the derived
class is used for the "METH" method. Calling the step action now results in
calling the "ActiveAction" of the basic class.

Thus, "test_act" is now provided with the value "father_action":

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAUIGE, S.A. www.rodavigo.net +34 986 288118

542/697 Bosch Rexroth AG

Programming Reference

RODAMIENTOS VIGO, S.A.

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

POU_SFCIOCC_Control_07: Logic: Application] PlcProg[DCC_Control_01: Logic: Application]| ¥ *
DCC_Control_01.Application PlcProg
Expression Tvpe alue Prepared value
= @ chid PoL_child
P test_meth STRING 'child_method'
P test_ack STRIMNG Father_action’
g an_int NT 583
Fig.5-14: Main program "PlcProg” online, using the attfribute "no_virtual _actions”

for FUNCTION_BLOCK POU_SFC
Attribute 'obsolete’

An "Obsolete pragma" can be added to a data type definition in order to out-
put a defined warning during compilation if the data type (structure, function
block, etc.) is used in the project.

This way, it can be noted that a data type is no longer valid, since an inter-
face has changed for example and that this should be updated in the project.

that is used locally, this warning
is defined "centrally" for all instances of a data type.

This pragma always affects the current line or, if it is located in a separate
line, the following line.

Syntax:

{attribute "obsolete” := "user defined text"}

The attribute is added to the declaration of the function block "fb1":
Example

{attribute "obsolete” := "datatype fbl not valid!"}
FUNCTION_BLOCK fb1l
VAR_INPUT
i2INT;
END_VAR

If "fb1" is used as (data) type, e.g. in "fbinst: fb1;", this waming is output when
the project is compiled: "datatype b1 not valid"

Attribute 'pack_mode'

The pragma specifies how a data structure is packed during the allocation.

The attribute has to be inserted above the data structure and affects the zip-
ping of the entire structure.

Syntax:

{attribute "pack_mode" := "<value>"}

The placeholder <value>, enclosed in simple apostrophes, has to be re-
placed by one of the following values:

Value Associated packing mode

0 Aligned, i.e. there are no memory gaps

1 1-byte aligned (same as aligned)

2 2-byte aligned, i.e. the maximum size of a memory gap is 1 byte
4 4-byte aligned, i.e. the maximum size of a memory gap is 3 bytes
8 8-byte aligned, i.e. the maximum size of a memory gap is 7 bytes

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 543/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Example Programming Reference

{attribute "pack_mode" := "1}
TYPE myStruct:

STRUCT

Enable: BOOL;

Counter: INT;

MaxSize: BOOL;
MaxSizeReached: BOOL;
END_STRUCT

END_TYPE

The memory space for a variable of the data type myStruct is assigned "1-
byte aligned":

If the memory address of its component is "Enable", e.g. 0x0100, the compo-
nent "Counter" follows at the address 0x0101, MaxSize at the address
0x0103 and MaxSizeReached at the address 0x0104.

If 'pack_mode'=2, "Counter" is at 0x0102, "MaxSize" is at 0x0104 and "Max-
SizeReached" is at 0x0106.

= The attribute can also be applied to POUs.

Due to possibly internal pointers, deal carefully with the applica-
tion of "Attribute Pack_mode".

Attribute 'parameterstringof’

The attribute of the pragma can be used to provide the instance name of a
variable to a visualization function block.

Synfax:

{attribute "parameterstringof® := "<variable>"}

In the main program, the instance myDUT of the user-defined structure DUT

is created.
Example
PROGRAM PLC_PRG
VAR

myDUT: DUT;
END_VAR

This instance is the input of a visualization block "Vis" (in the input parameter
"instance") which is referenced by a frame of another visualization "MainVi-

su™:
Elementname GenElemInst_z
Clipping]
Shiowe Frame]
Scaletype AMISOTROPIC
= References _ 35, CaDegys WisualElem, Structured Typeflode
= References
= PLCWINMNT. Application, Yis
inskance PLC_PRG. Dk
= Position
kS 1rd
Fig.5-15: Section from the element properties of a visualization element of
MainVisu.

In the interface editor belonging to "Vis", there is the input/output variable
"instance" and also another input variable called "instanceStr":

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

ROBAVIGS, S.A.

+34 986 288118

Servicio de Att. al Cliente

www.rodavigo.net

RODAMIENTOS VIGO, S.A.

544/697 Bosch Rexroth AG

Programming Reference

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Vis[BRC_Control: Logic: Application]
VAR INFUT

: STRING;

of
Fig.5-16: Inferface edifor

Although "instanceStr" is an input variable, it is not executed as an input in
the reference (compare with the figure above!). This is caused since the vari-
able "instanceStr" has the 'parameterstringof attribute and is therefore auto-
matically initialized with the name of the variables specified with the attribute.
In the example, "instance" is the associated variable, so the string variable
"instanceStr" is set to "PLC_PRG.myDUT" and can only be used in the visu-

alization "Vis" as text variable for a placeholder %s for example.
Attribute 'qualified_only'

If the pragma precedes a global variable list, the "GVL" variables can only be
addressed by specifying the global variable name, e.g.: "gvl.g_var".

This also applies to variables of the type enumerations.

The attribute "Qualified_Only" can be used to prevent confusion with local
variables.

Syntax:

{attribute "qualified_only"}

The following global variable list "GVL" has the attribute 'qualified_only".
Example

{attribute "qualified_only"}
VAR_GLOBAL

iVar:INT;
END_VAR

Within a POU, e.g. within the program PLC_Main, the global variable "ivVar"
can only be addressed by using the prefix GVL.

Example:

GVL.i1Var:=5;

However, the incomplete call of the variables generates an error:
iVar:=5;

Attribute 'reflection’

Signatures are added to the pragma.

For optimization purposes, this attribute has to be specified to function blocks
containing the

Syntax:

{attribute “reflection"}

Function block "POU" with all necessary attributes:

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 545/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Example Programming Reference

{attribute “reflection"}
FUNCTION_BLOCK POU

VAR
{attribute "instance-path"}
{attribute "noinit"}
str: STRING;

END_VAR

In the main program, one instance, "myPOU", of the function block POU is
defined:

Application in the program:

PROGRAM Plc_Main
VAR
myPOU - POU;
myString: STRING;
END_VAR
myPOU() ;
myString:=myPOU.str;

The initialization of the instance myPOU contains the string variable "str"
which contains the path of the instance myPOU.

In the example "DCC_Control.Application.Plc_Main.myPOU" this path is as-
signed to the variable "myString" in the main program.

Attribute ‘relative_offset'

The atfribute is used in structure definitions to shift structure elements in the
memory space allocated by the structure. It is thus for example possible to
allocate two structure entries on one memory space.

Synlax:

{attribute "relative_offset” := "<offset>"}

Counting the relative offset always starts at the starting address of the struc-
ture. The attribute becomes effective for all the following structure entries.

Application in the structure definition.

TYPE STRUCT_TEST :
STRUCT
wTest: WORD;

bit 0 : BIT; // Bit O
bit 1 : BIT; // Bit 1
bit 2 : BIT; // Bit 2
bit 3 : BIT; // Bit 3
bit 4 : BIT; // Bit 4
bit 5 : BIT; // Bit 5

END_STRUCT

END_TYPE

Attribute 'symbol'

The pragma defines which variables are included in the
i.e. which variables should be exported to the symbol list as sym-
bols.

These variables are provided for the external access as XML file in the proj-
ect directory and for users as a hidden file on the target system; e.g. for ac-
cess by an OPC server.

The variables with the attribute are loaded to the control, even if they are not
explicitly configured or visible in the editor of the symbol configuration.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

546/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Programming Reference

= Note that the symbol configuration has to be created as an object
below the respective application in the Project Explorer.

= Note that only symbols from programs or global variable lists can
be accessed. To access a symbol, the symbol name has to be
entered completely.

Syntax:

{attribute "symbol® := "none” | "read" | "write® | "readwrite"}

The pragma statement can be added to individual variables or can be as-
signed collectively to all variables declared in a program.

e To affect just a single variable, the pragma has to be placed in the line
in front of the variable declaration.

e To affect all variables in the declaration part of a program, the pragma
has to be placed in the first line of the declaration editor. However, even
in this case, statements for individual variables can be positioned explic-
itly in the respective lines.

The parameter determines the possible access to a symbol. Possible specifi-
cations: 'none', 'read’, 'write' or 'readwrite'. If no parameter is specified, the
default value 'readwrite' applies.

Example:

The variables "A" and "B" are exported with read-only and write access using
the following configuration. Variable "D" is exported with read-only access.

Examples:
{attribute "symbol® := "readwrite"}
PROGRAM PLC_PRG
VAR
A - INT;
B : INT;
{attribute "symbol® := "none"}
C - INT;
{attribute "symbol® := "read"}
D : INT;
END_VAR

Conditional Pragmas

The extension of the programming language "ST",

supports a variety of conditional
that affect the code generation in the precompiling or compiling process
(compilation of the project).

The compilation of a implementation code becomes condifional fo:
e a specific data type or variable declared

e a data type of a variable with a specific attribute

e avariable with a specific data type

® a specific function block or task existing or part of the call tree
® efc.

If is not possible for a POU or a GVL created in the POU window
@ to use a "{define...}" declared in an application.

"defines" in applications become only effective for interfaces loca-
ted below the application.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

ROBAVIGS, S.A.

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL.2GPRO*V12-AP01-EN-P

+34 986 288118

Servicio de Att. al Cliente

www.rodavigo.net

Bosch Rexroth AG 5471697

Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

{define identifier string}

During the precompilation, all subsequent instances of the identifier Identifier are re-
placed by the specified character string string if it is not empty (which is permitted).
The identifier remains defined and valid until the end of its application area or until it
is reset by an {undefine} statement. Required for a conditional compilation; see

{undefine identifier} .

The preprocessor definition of the identifier identifier (by {define}, see above) is reset.
The identifier is now undefined again. If the currently specified identifier is not defined
at all, the pragma is ignored.

{IF expr}
{ELSIF expr}
{ELSE}

{END_IF}

These Pragmas are for the conditional compilation. The specified expr expressions
have to be constant at the time of compilation. They are evaluated in the sequence in
which they appear until one of the expressions displays a value not equal to "zero".
The text linked with the statement is prepared and then compiled. The other lines are
ignored. The sequence of the sections is specified. However, the elsif and else sec-
tions are optional and elsif sections can occur unlimitedly.

Within the expr constant, several conditional compilation
be used, see below.

can

Conditional compilation operators

Fig.5-17: Possible effects of the compilation

One or more operators can be used in the constant expression expr of a con-
ditional compilation pragma {IF} or {ELSIF}, see above. However, they may
not be defined {define} or undefined {undefine}.

Note that like the definition, these expressions can also be entered as "com-
piler definitions" using a {define} in of an
object.

The following operators are supported:

Operator

Effect and example

defined (identifier)

This operator causes that the expression gets the value TRUE if the identifier "identi-
fier" was defined using a statement and was not undefined afterwards with
an statement. Otherwise, FALSE is returned.

defined (variable: variable)

This operator causes that the expression gets the value TRUE if the variable "varia-
ble" is declared in the current validity range. Otherwise, FALSE is retumed.

defined (type: identifier)

This operator causes that the expression gets the value TRUE if a data type with an
identifier "identifier" is declared. Otherwise, FALSE is returned.

defined (pou: pou-name)

This operator causes that the expression gets the value TRUE if a function block or
an action with the name "pou-name" is present. Otherwise, FALSE is retumed.

not yet implemented: defined (task:
identifier)

This operator causes that the expression gets the value TRUE if a task with the name
"identifier" is defined. Otherwise, FALSE is returned.

not yet implemented: defined (re-
source: identifier)

This operator causes that the expression gets the value TRUE if a resource object
with the name "identifier" is present for the application. Otherwise, FALSE is retumed.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

ROBAVIGS, S.A.

www.rodavigo.net

548/697 Bosch Rexroth AG

Programming Reference

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Operator

Effect and example

hasattribute (pou: pou-name, attrib-
ute)

This operator causes that the expression gets the value TRUE if the attribute "attrib-
ute" is specified in the first line of the declaration part of the function block "pou-
name". Otherwise, FALSE is retumed.

hasattribute (pou: pou-name, ‘attribute'), page 550

hasattribute (variable: variable, at-
tribute)

This operator causes that the expression gets the value TRUE if the attribute "attrib-
ute" is assigned to the variable "variable" using the {attribute} statement in the line in
front of the variable declaration. Otherwise, FALSE is retumed.

hastype (variable: variable, type-
spec)

This operator causes that the expression gets the value TRUE if the variable "varia-
ble" is a data type. Otherwise, FALSE is returmed.

hasvalue (define-ident, char-string)

This operator causes that the expression gets the value TRUE if a variable is defined
with an identifier "define-ident" and has the value "char-string". Otherwise, FALSE is
returned.

NOT operator The expression receives the value TRUE if the inverse value of the operator "opera-
tor" retums TRUE. "operator" can be one of the operators described in this table.

AND operator The expression returns the value TRUE if the specified "operator" operators both re-
turn TRUE. "Operator" can be one of the operators described in this table.

OR operator The expression returns TRUE if both of the specified operators "operator" retumn
TRUE. "Operator" can be one of the operators described in this table.

(operator) Operator parentheses

defined (identifier)

defined (variable: variable)

This operator causes that the expression gets the value TRUE if the identifier
"identifier" was defined using a {define} statement and was not undefined af-
terwards with an {undefine} statement. Otherwise, FALSE is returned.

Prerequisite: There are two applications, "App1" and "App2". The variable
"hallo" is defined by a {define} statement in "App1", but not in "App2".

Example

{IF defined (pdefl)}
// this code is processed in Appl
{info "pdefl defined"}
hugo := hugo + SINT#1;
{ELSE}
// the following code is only processed in App2
{info "pdefl not defined"}
hugo := hugo - SINT#1;

There is also an example of a included:

Only the information "pdef1 defined" is displayed in the message window if
the application is compiled, since "pdef1" is really defined. The message
"pdef1 not defined" is output if "pdef1" is not defined.

This operator causes that the expression gets the value TRUE if the variable
variable is declared in the current validity range. Otherwise, FALSE is re-
turned.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

+34 986 288118

Servicio de Att. al Cliente

ROBAVIGS, S.A.

RODAMIENTOS VIGO, S.A.

www.rodavigo.net +34 986 288118

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 549/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

defined (type: identifier)

defined (pou: pou-name)

not yet implemented: defined
(task: identifier)

not yet implemented: defined (re-
source: identifier)

Programming Reference

Prerequisite: There are two applications, App1 and App2. Variable "g_bTest"
is declared in "App1", but notin "App2.Precondition”

Example

{IF defined (variable:g_bTest)}

// the following code is processed in App2 only
g_bTest := x > 300;
{END_IF}

This operator causes that the expression gets the value TRUE if a data type
with an identifier identifier is declared. Otherwise, FALSE is returned.

Prerequisite: There are two applications, "App1" and "App2". The data type
"DUT" is declared in "App1", but notin "App2".

Example

{IF defined (type:DUT)}
// the following code is processed in Appl only
bDutDefined := TRUE;

{END_IF}

This operator causes that the expression gets the value TRUE if a function
block or an action with the name "pou-name" is present. Otherwise, FALSE is
returned.

Prerequisite: There are two applications, "App1" and "App2". The block
"CheckBounds" is present in "App 1", but not in "App2".

Example

{IF defined (pou:CheckBounds)}
// the following code is processed in Appl only
arrTest[CheckBounds(0,1,10)] := arrTest[CheckBounds(0,i,10)]+1;

{ELSE}
// the following code is processed in App2 only
arrTest[i] := arrTest[i]+1;
{END_IF}

This operator causes that the expression gets the value TRUE if a task with
the name "identifier" is defined. Otherwise, FALSE is returned.

Prerequisite: There are two applications, "App1" and "App2". The task
"PLC_PRG_Task" is defined in "App1", but not in "App2".

Example

{IF defined (task:PLC_PRG_Task)}

// the following code is processed in Appl only
erg := plc_prg.x;
{ELSE}

// the following code is processed in App2 only
erg :i= prog.x;
{END_IF}

This operator causes that the expression gets the value TRUE if a resource
object with the name "identifier" is present for the application. Otherwise,
FALSE is returned.

Prerequisite: There are two applications, "App1" and "App2". a resource ob-
ject "glob_var1" (Global Variable List) is present for "App1", but not for
llApp2ll.

Example

{IF defined (resource:glob_varl)}
// the following code is processed in Appl only

gvar_x := gvar_x + ivar;
{ELSE}
// the following code is processed in App2 only
X 1= X + lvar;
{END_IF}

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

550/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Programming Reference

hasattribute (pou: pou-name, 'attn:— This operator causes that the expression gets the value TRUE if the attribute
bute’) "attribute" is specified in the first line of the declaration of the function block
pou-name. Otherwise, FALSE is returned.

Prerequisite: There are two applications, "App1" and "App2". A function
"fun1" is defined in "App1" and "App2", but in "App1" the attribute 'vision' is
also assigned to it:

Definition of fun1 in App1:

{attribute “vision"}
FUNCTION funl : INT
VAR_INPUT

i o INT;
END_VAR
VAR
END_VAR

Definition of funt in AppZ2:

FUNCTION funl : INT
VAR_INPUT
i o INT;
END_VAR
VAR
END_VAR

Pragma statement:

{IF hasattribute (pou: funl, "vision®)}
// the following code is processed in Appl only
ergvar := funl(ivar);

{END_IF}

hasattribute (variable: variable, ‘at- This operator causes that the expression gets the value TRUE if the attribute
tibute’) attribute is assigned to the variable variable using the {attribute} statement in
the line in front of the variable declaration. Otherwise, FALSE is retumed.

Prerequisite: There are two applications, "App1" and "App2". Variable
"g_globalint" is used in "App1" and "App2", but in "App1" the attribute 'do-
count' is also assigned to it.

Declaration of g_globalint in App1:

VAR_GLOBAL

{attribute “"docount"}
g_globallnt : INT;
g_multiType : STRING;
END_VAR

Declaration of g_globalint in AppZ2:

VAR_GLOBAL
g_globallnt : INT;
g_multiType : STRING;

END_VAR

Pragma statement:

{IF hasattribute (variable: g_globallnt, "docount®)}
(* the following code line is executed in Appl only,
because there the variable g_globallnt is defined
with the attribute “docount®*)
g_globallnt := g_globallnt + 1;
{END_IF}

hastype (variable: variable, type- This operator causes that the expression gets the value TRUE if the variable
spec) variable is of the data type type-spec. Otherwise, FALSE is returned.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 551/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

Available data types of "type-spec”

ANY LINT WSTRING
ANY_DERIVED DINT STRING
ANY_ELEMENTARY INT
ANY_MAGNITUDE SINT TIME
ANY_BIT ULINT DATE_AND_TIME
ANY_STRING UDINT DATE
ANY_DATE UINT TIME_OF_DAY
ANY_NUM USINT
ANY_REAL LWORD
ANY_INT DWORD

WORD
LREAL BYTE
REAL BOOL

Prerequisite: There are two applications, "App1" and "App2". The variable
"g_multitype" is declared in "App1" with data type LREAL, but in "App2" with
the data type STRING:

Example

{IF (hastype (variable: g_multitype, LREAL))}
// the following code line is executed in Appl only
g_multitype := (0.9 + g _multitype) * 1.1;
{ELSIF (hastype (variable: g _multitype, STRING))}
// the following code line is executed in App2 only
g_multitype := "this is a multitalent”;
{END_IF}

hasvalue (define-ident, char- This operator causes that the expression gets the value TRUE if a variable is
string) defined with an identifier define-ident and has the value char-string. Other-
wise, FALSE is returned.

Prerequisite: There are two applications, "App1" and "App2". The variable
"test" is used in the applications "App1" and "App2"; in "App1" it has the val-
ue "1", in "App2" the value "2";

Example

{IF hasvalue(test,"1")}
(* the following code is executed in Appl because
there the value of the test variable is 1 *)
X 1= X + 1;
{ELSIF hasvalue(test,"2")}
(* the following code is executed in Appl because
there the variable test is 2 *)
X 1= X + 2;
{END_IF}

NOT operator The expression gets the value TRUE if the reciprocal of the operator operator
returns TRUE. The operator can be one of the operators described in this ta-
ble.

Prerequisite: There are two applications, "App1" and "App2". The POU
"PLC_PRG1" is present in "App1" and "App2", but the POU "CheckBounds"
is only in "App1"™:

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

5521697 Bosch Rexroth AG

Programming Reference

AND operator

OR operator

5.2 Data Types

(operetor)

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Example

{IF defined(pou: PLC_PRG1) AND NOT (defined(pou: CheckBounds))}
// the following code line is executed in App2 only
bANDNotTest := TRUE;

{END_IF}

The expression returns the value TRUE if the specified operator operators
both return TRUE. Operator can be one of the operators described in this ta-
ble.

Prerequisite: There are two applications, "App1" and "App2". The POU
"PLC_PRG1" is present in "App1" and "App2", but the POU "CheckBounds"
is only in "App1":

Example

{IF defined(pou: PLC_PRG1) AND (defined(pou: CheckBounds))}
(* the following code line is executed in Appl only,
because there only PLC_PRG1 and CheckBounds are defined.*)
bORTest := TRUE;
{END_IF}

The expression returns TRUE if both of the specified operators operator re-
turn TRUE. Operator can be one of the operators described in this table.

Prerequisite: There are two applications, "App1" and "App2". The POU
"PLC_PRG1" is present in "App1" and "App2", but the POU "CheckBounds"
is only in "App1":

Example

{IF defined(pou: PLC_PRG1) OR (defined(pou: CheckBounds))}
(* the following code line is execute in Appl and App 2,
because at least one of the POEs contains PLC_PRG1
and CheckBounds *)
bORTest := TRUE;
{END_IF}

Operator parentheses

5.2.1 Data Types, General Information

A data type is assigned to each identifier. A data type specifies the memory
reserved and the values corresponding to the memory contents.

When programming in IndraLogic, memory can be reserved for instances of

° and
° of function blocks

The following basic data types are supported:

1 bit 8 bits 16 bits 32 bits 64 bits

Boolean variable

*

Bit sequence

Signed integers

Unsigned integers

Floating point number

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

vAR

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 553/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

1 bit 8 bits 16 bits 32 bits 64 bits

Time *
Character string ** **
Reference .
Pointer *

* Extension of the EN 61131-3 standard

** Memory requirement of a character of the character string

Fig.5-18: Basic Data Types

5.2.2 Basic Data Types

Basic Data Types, General Information

BIT

BOOL

IndraLogic supports all described in the IEC 61131-3 standard.
[J

= Data types can also be defined themselves; see

Variables of the BIT can assume the truth values TRUE (1) and
FALSE (0).

= One bit is reserved as memory space in the structures.

If the data type is used outside the structures, one byte is re-
served as memory space.

The data type BIT is not part of the standard IEC 61131-3.
Also refer fo

o (operands).
Variables of the BOOL can accept the truth values TRUE (1) and
FALSE (0).

I An eight bit memory space is reserved.

554/697

ROBAVIGS, S.A.

+34 986 288118

www.rodavigo.net

Bosch Rexroth AG

Programming Reference

Bit Sequence

Integer Data Types

Floating Point Numbers

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Also refer fo
o (operands).

Each data type has a different data width (number of bits).
List of available bit sequence data types (with range limits):

Data type Lower limit Upper limit Memory space
BYTE 16#00 16#FF 8 bits
WORD 16#0000 16#FFFF 16 bits
DWORD 16#0000 0000 16#FFFF FFFF 32 bits
LWORD 16#0000 0000 16#FFFF FFFF 64 bits
0000 0000 FFFF FFFF
Also refer fo
o (operands)
o (operands)
Each integer data type covers a specific number range.
List of available integer data types (with range limits):
Data type Lower limit Upper limit Memory space
SINT -128 127 8 bits
USINT 0 255 8 bits
INT -32768 32767 16 bits
UINT 0 65535 16 bits
DINT -2147483648 2147483647 32 bits
UDINT 0 4294967295 32 bits
LINT -263 2851 64 bits
ULINT 0 2541 64 bits
= When data types are converted from large to small, information
can be lost.
Also refer to
o (operands)
o (operands)

REAL and LREAL are so-called floating point data types. The
data types REAL and LREAL are used with rational numbers. The reserved
memory space is 32 bits for REAL and 64 bits for LREAL.

Values allowed for REAL:

1(1.175494351e-38 to 3.402823466e+38)

Values allowed for LREAL:

1(2.2250738585072014e-308 to 1.7976931348623158e+308)

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 555/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

= If a REAL or LREAL is converted into SINT, USINT, INT, UINT,
DINT, UDINT, LINT or ULINT and the value of the REAL/LREAL
number is outside the value range of the integer, the result is un-
defined and depends on the target system. An exception is then
possible!

To get a target system-independent code, value range exceedan-
ces have to be intercepted via the application.

If the REAL/LREAL number is within the range, the conversion
runs equally on all systems.

Also refer fo
o (operands)

Text Variables A variable of the data type STRING can accept any character string. The size
specification for the memory reservation for the declaration refers to charac-
ters (1 byte) and can be made in parentheses or square brackets. If no size is

specified, 80 characters are defined as default.

In principle, the string length is not limited, but the string functions can only
process lengths between 1 - 255!

When a variable is initialized with a string that is too long for the variable data
type, the string is cut at the end accordingly.

String declaration with 35 characters:
Example.

str:STRING(35):= "This is a String~;

A variable of the data type WSTRING can accept any character string. The
size specification for the memory reservation for the declaration refers to
characters (2 byte) and can be made in parentheses or square brackets.

Compared to the STRING (ASCII), the WSTRING is interpreted in Unicode
format.

Example.

wstr: WSTRING:= "This is a WString";

When a variable is initialized with a WString that is too long for the variable
data type, the WString is cut at the end accordingly.

Also refer fo
o (operands)

Time Data Types ¢ (operands).

The data types "TIME", "TIME_OF_DAY" (abbreviated "TOD"), "DATE" and
"DATE_AND_TIME" (abbreviated "DT") have a size of 32 bits.

TIME has a size of 32 bits and a resolution in milliseconds.

For TOD, the time is given in milliseconds and calculations begin for TOD at
00:00 o'clock.

For DATE and DT, the time is given in seconds and the calculations begin on
January 1st 1970 at 00:00.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

556/697 Bosch Rexroth AG

Programming Reference

References (REFERENCE)

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

LTIME is used as time basis for high-resolution timers. LTIME has a size of
64 bits and a resolution in the nanosecond range.

Syntax:

LTIME#<time_declaration>

The time declaration can contain time units that apply for TIME constants and
also:

"us" : microseconds
"ns" : nanoseconds
Example.

LTIMELl: LTIME := LTIME#1000d15h23m12s34ms2us44ns;

The data types DATE, DATE_AND_TIME, TIME_OF_DAY are part of the
standard IEC 61131-3. The data type LTIME is not part of the standard IEC
61131-3.

Also refer to
[]

This string data type is an extension with regard to the IEC 61131-3 standard.

A "REFERENCE" is an "alias" for an object. It can be written or read using
identifiers.

, the value indicated is directly affected
and the assignment of reference and value is fix.

The address of the reference has to be set using a separate assignment op-
eration.

A reference is declared according to the following syntax:

Syntax:

<Name> : REFERENCE TO <data_type>
Example declaration.

ref_int : REFERENCE TO INT;

a - INT;

b : INT;

ref_int can now be used as an "Alias" for INT type variables.

Use case:

ref_int REF= a; // ref_int now points to a

ref_int = 12; // a now has the value 12

b := ref_int * 2; // b now has the value 24

ref_int REF= b; // ref_int now points to b

ref_int := a / 2; // b now has the value 6

ref_int REF= 0O; // explicit initialization of the reference

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL.2GPRO*V12-AP01-EN-P Bosch Rexroth AG 5571697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

= The following reference declarations cannot be made:
REFERENCE TO REFERENCE
or
ARRAY OF REFERENCE
or
POINTER TO REFERENCE.

= References are initialized (with 0) with the compiler version 2
Vv3.3.0.0.

Check for valid references The operator "__ISVALIDREF" can be used to check if a reference refers to a
valid value, i.e. a value not equal to 0.

Synlax:

<boolean variable>:= __ ISVALIDREF (with REFERENCE TO <data_type>);

<Boolean Variable> becomes TRUE if the reference points to a valid value.
Otherwise, it becomes FALSE.

Example:
Declaration:

ivar : INT;

ref_int : REFERENCE TO INT;
ref_intO: REFERENCE TO INT;
testref: BOOL := FALSE;
testrefO: BOOL := FALSE;

Implementation:

ivar = ivar +1;

ref_int REF= ivar;

ref_int0 REF= 0;

testref := _ ISVALIDREF(ref_int);

// TRUE, because ref_int points to ivar, with value <> 0
testrefO := _ ISVALIDREF(ref_int0);

Pointer (POINTER) // FALSE, because ref _intO is set to O

In an extension of the IEC 61131-3 standard, the usage of pointers is suppor-
ted:

Pointers save the addresses of variables, programs, function blocks, meth-
ods and functions while an application program is running.

A pointer can point to each of the named objects and to every and
even to
Implicit can be
Q used!

Syntax of a pointer declaration.

<Name>: POINTER TO <data_type | Functionblock | Program |
Method | Function>;

Dereferencing a pointer means obtaining the value that is currently at the ad-
dress to which the pointer is pointing. A pointer can be dereferenced by add-
ing the content operator "M" to the pointer indicator; see "pt"" in the example
below.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

558/697 Bosch Rexroth AG

Programming Reference

Function pointer

Index access to pointers

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

The address operator "ADR" can be used to assign the address of a variable
to a pointer.

Example:

VAR pt:POINTER TO INT; // Declaration of pointer pt
var_intl:INT := 5; // Declaration of variables var_intl and var_int2
var_int2:INT; END_VAR

pt := ADR(var_intl); // Address of varintl is assigned pointer pt
var_int2:= pt";
(* Value 5 of var_intl is assigned to variable
var_int2 by dereferencing pointer pt *)

In contrast to IndralLogic 1.x, function pointers that replace the INDEXOF op-
erator are now supported as well.

These pointers can be forwarded to external libraries, but a function pointer
cannot be called in an application in the programming system.

The function of the runtime system to register callback functions (system li-
brary function) expects the function pointer. Depending on the callback regis-
tered, the respective function is then implicitly called by the runtime system
(for example at stop).

To enable a system call (runtime system), the corresponding
has to be set for the function object.

The can be used for functions, programs, function
blocks and methods.

Since functions can change after an online change, the address of a pointer
that points to the function is output instead of the address of the function.
This address is valid as long as the function exists on the target system.

An extension of the IEC 61131-3 standard allows the index access "[]" to
variables of the type POINTER,

e pint[i] retums the basic data type.
® |ndex access to pointers is carried out arithmetically:

If the index access is used with a variable of type pointer, the offset is
calculated using

pint[i] = (pint + i * SIZEOF(base type))"

The index access also causes an implicit dereferencing of the pointer.
The resulting data type is the basic data type of the pointer.

Note: pint[7] # (pint + 7)™

e |f the index access is used with a STRING type variable, the sign at off-
set index-expr. is obtained.

The resultis of type BYTE.
stri] returns the ith character of the string as SINT (ASCII).

e |f the index access is used with a WSTRING type variable, the sign at
offset index-expr. is obtained.

The result is of type WORD.
wstr|i] returns the ith character of the string as INT (Unicode).

= references, which, in contrast to pointers directly affect a value,
can also be used.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 559/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference
Monitoring function for pointers The implicit monitoring function "CheckPointer" can be used to monitor the
memory access by pointers at runtime.

It has to be integrated into the application as an object
using the command

Add k|5 add..
Export... =3 Inkerface...
Import... _'é Data Server...
'f;! Compare... | @ Global Network Yariable List..,
¥ Cr_;-t-m.@: Data Types...
Copy Chrl+C O Folder...
) T Global Persistent Yariable List
Renams 2 @ Global variable List...
5, Find Element... & Pou...
= — FE_'I FOUs For Implicit Check..,
Fig.5-19: Add -> POUs for Implicit Check

After selecting the respective checkbox, select a program language and con-
firm it with "Open". The CheckPointer function opens in the respective editor.

Add Dbject Wizard

Add Object -l

Awailable functions:

™ checkBounds

™ checkpivbint

I Checkbiviint

" cCheckDivReal

I CheckDiviReal

[CheckRangeSigred
[CheckRangelinsigned

IV CheckPalntsr

Fig.5-20: Selecting CheckPointer

= The declaration of the functions is specified for all languages and
may not be modified! Only local variables may be added. In con-
trast to other monitoring functions, there is no suggestion for the
implementation of the CheckPointer. Users have to carry out the
implementation!

The CheckPointer function checks whether the transferred pointer points to a
valid memory address and if the position of referenced memory area corre-
sponds to the type of variables to which the pointer points. If both conditions
are met, the pointer itself is returned. Otherwise, CheckPointer should per-
form an appropriate error handling.

No implicit call of the monitoring function is carried out for the
THIS pointer.

Template.

(* Automatically generated code: DO NOT EDIT *)
FUNCTION CheckPointer : POINTER TO BYTE
VAR_INPUT

ptToTest : POINTER TO BYTE;

iSize : DINT;

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

560/697 Bosch Rexroth AG

Programming Reference

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

iGran : DINT;
bWrite: BOOL;
END_VAR

(* No standard implementation. Please enter your code here. *)
CheckPointer := ptToTest;

At the call, the functions of the following input parameters are transferred.
e pitToTest: Target address of the pointer

® (Size: Size of the referenced variable; the data type of iSize gas to be
compatible with INT and cover the range of the variables.

® Gran: Granularity of the referenced size, i.e. the largest unstructured
data type in the referenced variables. The data type of iGran has to be
compatible with INT.

e DbWrite: Type of access (TRUE=write access FALSE=read access. The
data type of bWirite has to be BOOL

If the check is positive, the unmodified input pointer is returned (ptToTest).

5.2.3 User-defined Data Types

User-Defined Data Types, General Information

Arrays (ARRAY)

Initialization of arrays

Except for the standard data types, users can define their own data types in a
project.

These definitions can be made by creating
in the Project Explorer or in the declaration of a function block.

Note to be as consistent as possible at the
for objects.

|The following user-defined data types can be created:
[]

One-, two- and three-dimensional arrays of elementary data types are sup-
ported. Arrays can be defined in the declaration of a function block and in the
global variable lists. Note that there are

Syntax:

<Array_Name>:ARRAY [<Il11>__<ull>,<ll12>__<ul2>,<113>._<ul3>] OF <elem.Type>

11, 12, 113 identify the lower limit of an array dimension,

ul1, ul2 and ul3 identify the upper limit. These limit values have to be inte-
gers.

Example:

Card_game: ARRAY [1..13, 1..4] OF INT;

= In contrast to IndraLogic 1.x, "square brackets" have to be placed
around the initialization value(s)!

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 561/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference
Complete initialization of an array:
Example.

arrl : ARRAY [1..5] OF INT := [1,2,3,4,5];

(* short for 1,7,7,7%)

arr2 : ARRAY [1..2,3..4] OF INT := [1,3(7)];

(* short for 0,0,4,4,4,4,2,3%)

arr3 : ARRAY [1..2,2..3,3..4] OF INT := [2(0),4(4).2,3];

Initialization of an array of a structure:
Example.

TYPE STRUCT1: // Structure definition
STRUCT
pl:int;
p2:int;
p3:dword;
END_STRUCT
END_TYPE
// Array initialization in the application declaration
ARRAY[1..3] OF STRUCT1:= [(pl:=1, p2:=10,p3:=4723),
(pl:=2, p2:=0, p3:=299),
(pl:=14,p2:=5, p3:=112)];

Partial initialization of an array:
Example.
arrd : ARRAY [1..10] OF INT := [1,2];

Elements without any assigned value as initialization value are initialized with
the default value of the basic data type. In the example above, the elements
arr4[3] to arr4[10] are initialized with 0.

Access to array components |n a two-dimensional array, the components are accessed as follows:
<Array-Name>[Index1, Index2]>
Example:

Card_game [9,2]

Functions to check the array limits: To guarantee a correct access to the array elements, the "CheckBounds"
function has to be available to the application.

It is integrated into the application as an object
using the command

-
Export,.. = Interface.,,
Import. .. (B9 DataServer,,,

2 compare... @ Global Netwark Variable List...

¥ e e 0:: Data Types..,

copy aukc | Folder..

E Paste Chrl+y TI' Global Persistent Variable List
REn e Ez “ Global Yariable List...

& Find Element... Peu...

A Dvink Draviam Iﬂ

Fig.5-21: Add -> POUs for Implicit Check

After selecting "CheckBounds", select a program language and confirm it with
"Open". The "CheckBounds" function opens in the respective editor.

DT ON

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

(S (N

562/697 Bosch Rexroth AG

Programming Reference

RODAMIENTOS VIGO, S.A.

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Add Object -—

£

~Available functions:
ChedkBounds
CheckDivDint

ChiedkDivLInt

T TR

CheckDivRes!

ChedDivLReal

CheckRangeSigned

ChedkRangeUnsigned

| I checkpainter |

e

B

Fig.5-22: Selecting CheckBounds

The declaration part of the functions is specified for all languages and may
not be modified! Only local variables may be added. A suggestion to imple-
ment the function is available in the programming language ST and may be
modified as desired.

The task of the CheckBounds function is to monitor array limits and their ex-
ceedances. For example, if array limits are exceeded, an error flag can be set
or the array indices can be changed. The function is called implicitly as soon
as values are assigned to a variable of the type array.

= To maintain the monitoring functionality, the declaration part of
the function may not be modified!

Using the CheckBounds function. The function is programmed in ST as fol-
lows by default:

Example to use the CheckBounds funcfion

// Declaration:
FUNCTION CheckBounds : INT
VAR_INPUT

index, lower, upper: INT;
END_VAR

// Program:
(* Automatically generated code:
This is a proposal for implementation. *)
IF index < lower THEN
CheckBounds := lower;
ELSIF index > upper THEN
CheckBounds := upper;
ELSE
CheckBounds := index;
END_IF

When calling, the function obtains the following input paramefers:
® index: Index of the array element

e |ower: Lower limit of the array dimension

e upper: Upper limit of the array dimension

The return value is the index of the array element as long as it is located in
the valid range. Otherwise, depending on how the limit range has been viola-
ted, the upper or lower limit is returned.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 563/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Structures (STRUCT)

Programming Reference

In the program below, the defined upper limit of the array "a" has been ex-
ceeded:

Example:

PROGRAM PLC_PRG

VAR
a: ARRAY[O..7] OF BOOL;
b: INT:=10;

END_VAR

a[b]:=TRUE;

In this case, the implicit call of the function CheckBounds carried out during
the assignment causes the index 10 to be changed to the upper limit of the
array range "a".

Thus, the value TRUE is assigned to the element [7]. This corrects attempted
array accesses outside the valid array range.

Structures are created in the project as "DUT" (
) objects using the command "Add".

Alternatively, add a DUT from the application library.

&2 Project Explorer

Lisary| B Start

= 2 add.
=8 Tkl . e
T et [oetaserver..
[B Compare... @ Global Metwork variable List...

14| Technology ot Chrl+x
- %] Robot

By Copy Chrlec [Folder...

Fig.5-23: Adding a DUT
Structures start with the keywords TYPE and STRUCT and end with
END_STRUCT and END_TYPE.

= In contrast to IndralLogic 1.x, a colon ™" has to be placed after
TYPE in the structure declaration.

The syntax for structure declaration is as follows:
SYNTAX:

TYPE <structure_name>:
STRUCT
<variable_declaration 1>

<variable;&éclaration n>
END_STRUCT
END_TYPE

<structure_name> is a type that is identified in the entire project and that
can be used as a standard data type.

Nested structures are permitted.

564/697 Bosch Rexroth AG

Programming Reference

Access to structure components

Union (UNION)

Enumerations

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

The only limitation is that addresses may not be assigned to variables (AT
declaration is not allowed!).

A structure definition called polygon line:
Example: Structure with arrays as elements

TYPE Polygonline:
STRUCT
Start:ARRAY [1..2] OF INT;
Pointl:ARRAY [1..2] OF INT;
Point2:ARRAY [1..2] OF INT;
Point3:ARRAY [1..2] OF INT;
Point4:ARRAY [1..2] OF INT;
End:ARRAY [1..2] OF INT;
END_STRUCT
END_TYPE

Initializing structures:
Example.

Poly_1:polygonline:=(Start:=[3,3], Pointl =[5,2], Point2:=[7,3],
Point3:=[8,5], Point4:=[5,7], End := [3,5]);

Initializations with variables are not permitted.
An example for initializing an array of a structure is located under

Structure components are accessed according to this syntax:
<StructureName>.<ComponentName>

For the example of the "polygon line" structure above, also use
Poly_1.Start

to access the "Start" component.

In an extension of the IEC 61131-3 standard it is possible to declare "unions”
in user-defined data types.

In a union, all components have the same offset, i.e. they occupy the same
memory location.

Thus, in the following example declaration of a union an assignment to
name1.a would also apply to name1.b.

Example of a declaration in the data type editor (DUT).

TYPE namel: UNION
a - LREAL;
b - LINT;
END_UNION
END_TYPE

Example of the initialization and use of UNION ‘name1"

PROGRAM Plc_Main
VAR

UnionlInit:namel;
END_VAR

Unionlnit.a:=10; // LREAL, 10.0

An enumeration is a consisting of a sequence of string
constants.

WO

(S

g
B .
)

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 565/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

Enumeration values are recognized globally in the project even if they are de-
clared within a function block.

An enumeration is created in the project as "DUT" (
) objects using the command "Add".

= In contrast to IndralLogic 1.x, a local enumeration declaration can
no longer be made - exceptin TYPE.

Synlax:

TYPE
<name>: (<Enum_0>,<Enum_1>, ...,<Enum_n>)| <base_data_type>;
END_TYPE

A variable of type <identifier> can accept one of the enumeration values
<Enum_..> and is initialized with the first of these values.

The values are compatible with integers, i.e. operations can be carried out
with them as with INTEGER variables.

A number x can be assigned to each enumeration value.

If this assignment is not made explicitly in the declaration, the first component
gets "0" and the next components "1, 2", etc.

If the assignment of number values is made in the declaration, ensure that
the sequence of numbers increases in the enumeration.

Example.

TYPE TRAFFIC_SIGNAL: (red, yellow, green:=10);
// The values for the colors are red=0, yellow=1, green=10
END_TYPE

TRAFFIC_SIGNAL1 : TRAFFIC_SIGNAL;

TRAFFIC_SIGNAL1:=0; // The value of the traffic signal is red

FOR 1:= red TO green DO

i =1+ 1;
END_FOR;

Extensions of the EN 611371-3 standard:

1. The type name of an enumeration can be used (as
) to provide unique access to an enumeration constant.
This allows to use the same constant in different enumerations.

Definition of two enumerations:

TYPE COLORS_1: (red, blue);

END_TYPE

TYPE COLORS_2: (green, blue, yellow);
END_TYPE

Enumeration value "blue” in a function block:

// Declaration:
colorvarl : COLORS_1;
colorvar2 : COLORS_2;
// Implementation:

(* possible: *)

colorvarl := colors_1.blue;
colorvar2 := colors_2.blue;
(* not possible: *)
colorvarl := blue;
colorvar2 := blue;

2. The basic data type of the enumeration - preset as INT - can be defined
by another data type.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

ROBAVIGS, S.A.

www.rodavigo.net +34 986 288118

566/697 Bosch Rexroth AG

Programming Reference

Subrange Types

Functions for range monitoring

RODAMIENTOS VIGO, S.A.

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Basic data type for the enumeration BigEnum is supposed to be DINT:

TYPE BigEnum : (yellow, blue, green:=16#8000) DINT;
END_TYPE

with a value range that only in-
cludes a subset of a basic type. Note that it can
. The declaration can be made in a
, but a variable can also be declared directly with a subrange type.

Syntax for the declaration as Data Unit Type (DUT):
TYPE <Name>:<Inttype> (<IlI>._.) END_TYPE

<Name> Has to be a valid IEC identifier

<Inttype> | One of these data types is possible: SINT, USINT, INT, UINT, DINT,
UDINT, LINT, ULINT, (BYTE, WORD, DWORD, LWORD).

 Constant that has to be compatible with the basic data type and that
determines the lower limit of the range type.

The lower limit itself belongs to this range.

 Constant that has to compatible with the basic data type and that deter-
mines the upper limit of the range type.

The upper limit itself belongs to this range.

Examples:
Subranges in type definition:
TYPE

SubInt : INT (-4095..4095);
END_TYPE

Direct declaration of a variable with a subrange type:

VAR
i : INT (-4095._4095);
ui = UINT (O..10000);
END_VAR

If a constant is assigned to a subrange type (in the declaration or in the state-
ment) and this constant is not within the range (e.g. 1=5000), an error mes-
sage is output.

To monitor the range limits of a subrange type at runtime, the function
"CheckRangeSigned" or "CheckRangeUnsigned" has be integrated into the
application.

They are integrated into the application as an object
using the command

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente
RODAMIENTOS VIGO, S.A,

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 567/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

=
Expart... J-«': Interface:..
Import... 'A Data Server...
= Compare... 1 & Global Metwark Variable List..,
_: CE) W @2 Data Typss...
Copy Chr+C Dy Folder..
) T Global Persistent Yariable List
Renams 2 @ Global variable List...
5, Find Element...) POl
= — FE_'I POUs For Implicit Check. ..
Fig.5-24. Add -> POUs for Implicit Check

After selecting the respective checkbox, select a program language and con-
firm it with "Open". The "CheckRangeSigned" or "CheckRangeUnsigned"
function opens in the respective editor.

Add Dbject Wizard

Add Object W

Aailable functions:
[IE; ChisckBounds ‘
[checkpivoint

CheckbieLInk

CheekDivRes

CheckDiviReal

CheckRangsSigned

CheckRangslingigned

CheckPolnter |

2 R E e

Fig.5-25: Selecting "CheckRangeSigned” or "CheckRangeUnsigned”

The declaration of the functions is specified for all languages and may not be
modified! Only local variables may be added. A suggestion for programming
the functions is available in ST. It may be freely modified.

The task of the functions "CheckRangeSigned" or "CheckRangeUnsigned" is
to monitor range limits and instances and their exceedances.

If range limits are exceeded, an error flag can be set or a value can be
changed for example.

The function is called implicitly when a value is assigned to a variable of the
type subrange.

To maintain the monitoring functionality, the declaration part of
the function may not be modified!

If a value is assigned to a variable of a signed subrange type, this causes an
automatic call of the "CheckRangeSigned" function. The function, which limits
the assignment value to the subrange specified at the variable declaration, is
implemented in ST by default as follows:

Example.

// Automatically generated code : DO NOT EDIT
FUNCTION CheckRangeSigned : DINT
VAR_INPUT

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

568/697 Bosch Rexroth AG

Programming Reference

RODAMIENTOS VIGO, S.A.

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

value, lower, upper: DINT; END_VAR

// Automatically generated code :
// 1t deals with an implementation suggestion.

IF (value < lower) THEN

CheckRangeSigned := lower;
ELSIF(value > upper) THEN

CheckRangeSigned := upper;
ELSE

CheckRangeSigned := value;
END_IF

At the call, the functions of the following input parameters are transferred.
e Value: Value of the variable to be assigned by the subrange type

® |ower: Lower range limit

e upper: Upper range limit

The return value is the assigned value itself as long as it is within the valid
range.

Otherwise, the upper or lower limit is retumed depending on the violation of
the subrange.

The
assignment without limit monitoring

i:=10*y

is now replaced explicitly by
the assignment with limit monitoring

i := CheckRangeSigned(10*y, -4095, 4095);

For example, if "y" has the value "1000", the value "10*1000=10000" is not
assigned to the variable "i" as intended in the code, but the value of the upper
range limit instead which is "4095".

The same applies for the "CheckRangeUnsigned" function.

= If neither the "CheckRangeSigned" nor the "CheckRangeUn-
signed" function is available, the subrange is not checked for the
respective variables at runtime! In this case, any value between -
32768 and 32767 can be assigned to a variable of a subrange
type of the data type INT!

= When the functions "CheckRangeSigned" and "CheckRangeUn-
signed" are integrated, endless loops can result.

This is the case for example if the counter variable of a FOR loop
is a subrange type and the counting range of the loop leaves the
defined subrange!

Example.

VAR
ui = UINT (O..10000);
END_VAR
FOR ui:=0 TO 10000 DO

END_FOR

The FOR loop is never exited, since the monitoring function "CheckRange-
Signed" prevents "ui" from being set to a value greater than 1000.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 569/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

5.3 IEC Operators and Standard-Extending Functions

5.3.1 IEC Operators and Standard-Extending Functions, General Informa-
tion
IndraLogic 2G supports all IEC operators. In contrast to the default functions,
these operators are implicitly known across the entire project.

In addition to the IEC operators, the following operators, which are not descri-
bed by the |IEC standard, are also supported: ANDN, ORN, XORN, INDEXOF
and SIZEOF (see arithmetic operators), ADR and BITADR and content oper-
ators (see address operators), some "namespace operators".

Operators are used in a function block like functions.

= For operations with floating point data types, the result of calcula-
tion depends on the target system hardware used!

° For REAL variables, the "double precision" calculation is
used for the controls L45/L65.

o Due to the processor, this approach is not possible for L25
controls. Therefore, it is calculated with the "single precision”
method.

Calegories of operators:
® Assignment operators,

5.3.2 Arithmetic Operators

Arithmetic Operators, Overview

The following operators described by the IEC 61131-3 standard are suppor-
ted:

The following operators extend the standard:
[]

Servicio de Att. al Cliente

570/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Programming Reference

ADD IEC operator: Addition of variables.

Types allowed: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT,
DINT, UDINT, LINT, ULINT, REAL and LREAL.

Two TIME variables can be added; the result can also be from a different
time data type,

(e.g. t#45s + t#50s = #1m35s).

LD 7
ADD Z
AD 4
AD 7
ST ivar
Fig.5-26: Operator ADD in IL
ADD ADD ADD
7T — Varl
27 4 T
Fig.5-27: Operator ADD in FBD
Operafor ADD in ST

varl := 7+2+4+7;

MUL
IEC operator: Multiplication of variables.
Types allowed: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT,
DINT, UDINT, LINT, ULINT, REAL and LREAL.
LD 7
MUL Z ;
4 ;
a
8T Varl
Fig.5-28: Operator MUL in IL
MUL MUL MUL
7T —— Varl
27 4] T
Fig.5-29: Operator MUL in FBD
QOperator MUL in ST
varl = 7*2%4*7;
SuB

IEC operator: Subtraction of one variable from another.

ROBAVIGS, S.A.

RODAMIENTOS VIGO, S.A.

www.rodavigo.net +34 986 288118

Servicio de Att. al Cliente

DOK-IWORKS-IL.2GPRO*V12-AP01-EN-P Bosch Rexroth AG 571/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

DIV

Functions for check

Programming Reference

Types allowed: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT,
DINT, UDINT, LINT, ULINT, REAL and LREAL.

A TIME variable can also be subtracted from a variable of a different TIME
type. The result is located in a variable of a third TIME type. However, note
that negative TIME values are undefined.

LD 7

SUE 2

5T Varl
Fig.5-30: Operator SUB in IL

Result: Content of Var1 is 5

SUB
7T —— Varl
5 —
Fig.5-31: Operator SUB in FBD
Operaftor SUB in ST
varl = 7-2;

IEC operator: Division of one variable by another.

Types allowed: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT,
DINT, UDINT, LINT, ULINT, REAL and LREAL.

LD g
DIV z
5T Varl
Fig.5-32: Operator DIV in IL
Result: Content of Var1 is 4
DIV
R —— Varl
5 —
Fig.5-33: Operator DIV in FBD
Operator DIV in ST
varl := 8/2;
= The behavior when dividing by zero can depend on the target
system!

The behavior at a division can be preset by the user.

The functions CheckDivint, CheckDivLint, CheckDivReal and CheckDivLReal
can be used to monitor the value of a divisor in order to prevent division by 0.
After they are integrated into the application, its call automatically precedes
each division that occurs in the corresponding code.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

5721697 Bosch Rexroth AG

Programming Reference

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

They have to be integrated into the application as an object
using the command

Export... w Interface. ..
Irnport (%9 DataServer,,

E—i.] Compare.., “ Glabal Metwark Variable List, ..

b culex |8 DataTypes..

Copy Chrl+C O Folder..

B past Chriey T Global Persistent Variable List
Rename o @ Global variable List...

5, Find Element... POU...

& Dvintk Draview Iﬂ

Fig.5-34. Add -> POUs for Implicit Check
Add Object Wizard
Add Object =

()

I- CheckPaointer

Fig.5-35: Selection "CheckDivReal”

The declaration part of the functions is fixedly determined and may not
changed. Only local variables may be added. A suggestion to implement the
functions is available in ST.

See the following example to implement the function CheckDivReal:
Default implementation of the function CheckDivReal in ST:

// Implicitly generated code : DO NOT EDI
FUNCTION CheckDivReal : REAL
VAR_INPUT
divisor:REAL;
END_VAR
// Implicitly generated code :
// only an suggestion for implementation
IF divisor = 0 THEN
CheckDivReal :=1;
ELSE
CheckDivReal :=divisor;
END_IF;

The operator DIV uses the output of the function CheckDivReal as a divisor.

In the example program below, division by 0 is prevented, since the function
"CheckDiv Real" changes the value of the divisor "d" - implicitly initiated with
"0" - to "1" before the division is executed. The result of the division is thus

799.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 573/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

MOD

MOVE

Programming Reference

Example in ST:

PROGRAM PLC_PRG
VAR

erg:REAL;
V1:REAL:=799;
d:REAL;
END_VAR

erg:= vl / d;

IEC operator: Modulo division of one variable by another.

Types allowed: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT,
DINT, UDINT, LINT, ULINT. This function returns the integer remainder of the
division as a result.

LD 9
MOD 2
ST Varl
Fig.5-36: Operator MOD in IL
Result: Content of Var1 is 1
MOD
= —— Varl
5 —
Fig.5-37: Operator MOD in FBD

Operator MOD in ST:
varl := 9 MOD 2;

IEC operator: Assignment of a variable to another variable of a corresponding
type.

Since MOVE is available as function block in the CFC, FBD and LD editors,
the EN/ENO functionality can also be used for a variable assignment.

Example in CFC in connection with the EN/ENO function:
Only if en_i is TRUE, the value of variable var2 is assigned to variable var1.

MOVE o
en_l EM EMO EN_0r>
warl Vare

Fig.5-38: Operaftor MOVE in CFC

Without this EN/ENO functionality, using the MOVE operator is not reasona-
ble, since the code piece becomes a simple assignment.

574/697 Bosch Rexroth AG

Programming Reference

SIZEOF

INDEXOF

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Example.

Example: Operator MOVE in IL (content of var2 is the content of var1):

LD warl

MOYE

5T varz
Fig.5-39: Operator MOVE in IL

This corresponds to:

LD wvarl

5T varz
Fig.5-40: Operators LD and ST in IL
Operaftor MOVE in ST:

ivar2 :-= MOVE(ivarl);
// you get the same result with:
ivar2 := ivarl;

This arithmetic operator is not specified by the IEC 61131-3 standard.

It can be used to specify the number of bytes needed by the specified varia-
ble x.

The SIZEOF operator always returns an unsigned value. The type of the re-
turn variable adjusts to the size of the variable x.

Return value of SIZEOF(x) Data type of the constants implicitly used

for the size found
0 < size of x < 2566 USINT
256 < size of x < 65536 UINT
65536 < size of x < 4294967296 UDINT
4294967296 < size of x ULINT
Fig.5-41:
Declaration.
arrl:ARRAY[O..4] OF INT;
Varl:INT;
Operator SIZEOF in ST:
varl := SIZEOF(arrl); (* i.e.: varl:=USINT#10; *)
LD arrl
SIZEOF
5T Varl
Fig.5-42: Operator Sizeof in IL

Resultis 10

This arithmetic operator is not specified by the IEC 61131-3 standard.

vAR

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 575/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

The internal index of a function block can be determined with this function.
Example. Operator INDEXOF in ST
varl := INDEXOF(POU2);

5.3.3 Bit String Operators

Bit String Operators, Overview

The following bit string operators described by the IEC 61131-3 standard are
supported:

Not yet available: The following bit string operators are supported in an ex-
tension of the standard:

AND Bit string operators compare the bits from two or more operands.

IEC bit string operator: AND bit by bit from bit operands. If the input bits are
1, the output bitis 1. Otherwise, itis 0.

Types allowed: BOOL, BYTE, WORD, DWORD, LWORD.

Declaration:

VAR

Varl:BYTE;

END_VAR
LD Z#1001_00l11
AHD Z#1000_1010
ST wvarl

Fig.5-43: Operator AND in IL

Result;: Content of Var1 is 2#1000_0010

2#1001_0011— —— warl
2#1000_1010——

Fig.5-44. Operator AND in FBD
Operator AND in ST:

varl = 2#1001_0011 AND 2#1000_1010

ANDN ### In preparation ###

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

576/697 Bosch Rexroth AG

Programming Reference

OR

ORN

XOR

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

This is not described in the IEC 61131-3 standard.

IEC bit string operator: OR bit by bit from bit operands. If at least one of the
input bits is 1, the output bit is 1. Otherwise, itis 0.

Types allowed: BOOL, BYTE, WORD, DWORD, LWORD.

Declaration:
VAR
varl:BYTE;
END_VAR
LIy 16 #FF
oR l6#aZ
5T warl
Fig.5-45: Operafor OR in IL
Result: Content of var1 is 2#1001_1011
oR
La# FF— — warl
lgaz—
Fig.5-46: Operator OR in FBD
Operafor OR in ST:
varl := 2#1001_0011 OR 2#1000_ 1010
#HH In preparation ##H#
This is not described in the IEC 61131-3 standard.

IEC bit string operator: XOR bit by bit from bit operands. If only one of the two
bit inputs is 1, the resultis 1. If both inputs are 0 or 1, the result is 0.

Types allowed: BOOL, BYTE, WORD, DWORD, LWORD.

= Note the behavior of the XOR function block in extended form,
that is with more than two inputs: The inputs are checked in pairs
and, in turn, the respective results are then compared with each
other (meets the standard, but not necessarily expectations).

Declaration:
VAR
Varl:BYTE;

END_VAR
LD Z#1001_ 0011
X0R Z#l000_1010
ST varl

Fig.5-47: Operator XOR in IL

Result: var1 has the content 2#0001_1001

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Bosch Rexroth AG 5771697

Programming Reference

Z#1001_0011—
Z#1000_1010—

X0R

—— wvarl

Fig.5-48: Operator XOR in FBD
Operator XOR in ST:

Varl := 2#1001_0011 XOR 2#1000_1010

XORN ### In preparation ###

This is not described in the |IEC 61131-3 standard.

NOT

IEC bit string operator: NOT bit by bit of a bit operand. The output bit is 1 if

the corresponding input bit is 0 and vice versa.

Types allowed: BOOL, BYTE, WORD, DWORD, LWORD.

Declaration:
VAR
Varl:BYTE;
END_VAR
LD Z#1001_0oll
HOT
ST varl
Fig.5-49: Operator NOT in IL

Result: Content of var1 is 2#0110_1100

Z#1001_00ll1—

HOT

—— wvarl

Flig.5-50: Operator NOT in FBD
Operator NOT in ST:

Varl = NOT 2#1001_0011

5.34 Bit Shift Operators
Bit Shift Operators, Overview

The following bit shift operators described in the IEC 61131-3 standard are

supported:

SHL ¢
IEC operator: Shifting an operand to the left bit by bit.

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

5781697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

Programming Reference SYNTAX:

erg:= SHL (in, n)

in: Operand to be shifted to the left.
n: Number of bits by which in is shifted to the left.

If n exceeds the data type width, BYTE, WORD, DWORD and LWORD oper-
ands are filled with zeroes, while fixed sign type operands, e.g. INT, are shif-
ted arithmetically, i.e. they are filled with the value of the top bit.

= Note that the number of bits considered for the arithmetic opera-
tions is specified by the data type of the input variable "in". If this
is a constant, the smallest possible data type is considered. The
data type of the output variable does not affect the arithmetic op-
eration.

In the following example in a hexadecimal display, note that the different re-
sults for erg_byte and erg_word depend on the data type of the input variable
(BYTE or WORD), although the values of the input variables in_byte and
in_word are equal.

QOperator SHL in ST:

PROGRAM shl_st
VAR
in_byte : BYTE:=16#45;
in_word : WORD:=16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR
erg_byte:=SHL(in_byte,n); (* 16#14%)
erg_word:=SHL(in_word,n); (* 16#01141%*)

LD in_byte
SHL 2
ST erg_hyte
Fig.5-51. Operator SHL in IL
SHL
in— ——erg_byte
5 —
Fig.5-52: Operator SHL in FBD

SHR

IEC operator: Shifting an operand to the right bit by bit.
SYNTAX:
erg:= SHR (in, n)

in: Operand to be shifted to the right.
n: Number of bits by which in is shifted to the right.

If n exceeds the data type width, BYTE, WORD, DWORD and LWORD oper-
ands are filled with zeroes, while fixed sign type operands, e.g. INT, are shif-
ted arithmetically, i.e. they are filled with the value of the top bit.

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

RODAVISS, 8.A. www.rodavigo.net +34 986 238118

Servicio de Att. al Cliente

RODAMIENTOS VIGO, S.A.

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 579/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference

= Note that the number of bits considered for the arithmetic opera-
tions is specified by the data type of the input variable "in". If this
is a constant, the smallest possible data type is considered. The
data type of the output variable does not affect the arithmetic op-
eration.

In the following example in a hexadecimal display, note that the different re-
sults for erg_byte and erg_word depend on the data type of the input variable
(BYTE or WORD), although the values of the input variables in_byte and
in_word are equal.

Operator SHR in ST:

PROGRAM shr_st
VAR
in_byte : BYTE:=16#45;
in_word : WORD:=16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR
erg_byte:=SHR(in_byte,n); (* 16#11 *)
erg_word:=SHR(in_word,n); (* 16#0011 *)

LD in_byte
SHR 2
ST erg_hyte
Fig.5-53: Operafor SHR in IL
S5HR
in_byte—] ——ery_byte
5 —
Fig.5-54. Operator SHR in FBD
ROL IEC operator: Rotation of an operand bit by bit to the left.

SYNTAX:
erg:= ROL (in, n)

Data types allowed: BYTE, WORD, DWORD and LWORD.

in is shifted n times 1 bit to the left and at the same time, the bit with the out-
ermost position at the left is inserted again from the right.

I Note that the number of bits considered for the arithmetic opera-
tions is specified by the data type of the input variable "in". If this
is a constant, the smallest possible data type is considered. The
data type of the output variable does not affect the arithmetic op-
eration.

In the following example in a hexadecimal display, note that the different re-
sults for erg_byte and erg_word depend on the data type of the input variable
(BYTE or WORD), although the values of the input variables in_byte and
in_word are equal.

QOperator ROL in ST:

PROGRAM rol_st
VAR
in_byte : BYTE:=16#45;

Poligono Indutrial O Rebullén s/n. 36416 - Mos - Espafia - rodavigo@rodavigo.com

580/697 Bosch Rexroth AG

Programming Reference

ROR

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS IndralLogic 2G PLC Programming System

in_word : WORD:=16#45;

erg_byte : BYTE;

erg_word : WORD;

n: BYTE :=2;
END_VAR

erg_byte:=ROL(in_byte,n); (* 16#15 *)
erg_word:=ROL(in_word,n); (* 16#0114 *)

LD in_byte

ROL n

ST erg_hyte
Fig.5-55: Operator ROL in IL

ROL
in_byte—] — — erg_byte
n—

Fig.5-56: Operator ROL in FBD

IEC operator: Rotation of an operand bit by bit to the right.
SYNTAX:
erg = ROR (in, n)

Data types allowed: BYTE, WORD, DWORD and LWORD.

in is shifted n times 1 bit to the right and at the same time, the bit with the
outermost position at the right is inserted again from the left.

= Note that the number of bits considered for the arithmetic opera-
tions is specified by the data type of the input variable "in". If this
is a constant, the smallest possible data type is considered. The
data type of the output variable does not affect the arithmetic op-
eration.

In the following example in a hexadecimal display, note that the different re-
sults for erg_byte and erg_word depend on the data type of the input variable
(BYTE or WORD), although the values of the input variables in_byte and
in_word are equal.

Operator ROR in ST

PROGRAM ror_st
VAR
in_byte : BYTE:=16#45;
in_word : WORD:=16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR
erg_byte:=ROR(in_byte,n); (* 16#51%)
erg_word:=ROR(in_word;n); (* 16#4011%*)

LD in_byte
ROR I
ST erg_hyte

Fig.5-57: Operafor ROR in IL

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 581/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

5.3.5

Programming Reference

ROR
in_byte—] — — erg_byte

n

Fig.5-58: Operator ROR in FBD

Selection Operators

Selection Operators, Overview

SEL

All selection operators can also be used for constants and variables.

To ensure clarity in the examples, the following includes only constants:
[J

IEC selection operator: Binary selection. G specifies whether INO or IN1 is
assigned to the variable OUT.

SYNTAX:

OUT := SEL(G, INO, IN1) // bedeutet:
/ OUT := INO; if G=FALSE
// OUT := IN1; if G=TRUE.

Data types allowed:
INO, IN1, OUT: Can be any type.
G: BOOL.

= An expression preceding INO is not calculated if G is TRUE!

Operator SEL in IL:

LD TRUE
SEL 3,4 // INO= 3, INl1= 4
ST Vvarl // 4

LD FALSE
SEL 3,4 // INO= 3, IN1= 4
ST Vvarl // 3

Operator SEL in ST
Varl:=SEL(TRUE,3,4); // 4

SEL
TRUE—] —— Varl
5 —
14—

Fig.5-59: Operafor SEL in FBD

.

e Att. al Clien

Servicio d

582/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference IEC selection operator: Maximum function. Retumns the greater of the two val-
ues.
MAX SYNTAX:

OUT := MAX(INO, IN1)

INO, IN1 and OUT can be any type.

LD ag
MAX 30
MAX 40
MAX 77
8T Warl
Fig.5-60: Operator MAX in IL
Resultis 90
MAx MAx MAX
90— —— WVarl
30— 40— 77
Fig.5-61. Operator MAX in FBD
Operator MAX in ST
Varl:=MAX(30,40); // 40
Varl:=MAX(40.MAX(90,30)); // 90
MIN IEC selection operator: Minimum function. Returns the smaller of the two val-
ues.
SYNTAX:

OUT := MINCINO, IN1)

INO, IN1 and OUT can be any type.

LD a0
MIH 30
MIH 40
MIH 77
5T WVarl
Fig.5-62: Operator MIN in IL
Resultis 30
MIH MIH MIN
A0 —— Varl
30— 40— A
Fig.5-63: Operator MIN in FBD
Operafor MIN in ST
Varl:=MIN(90,30); // 30;

varl:=MIN(MIN(90,30),40); // 30:

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 583/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

LIMIT

MUX

P ing Ref
IEC selection operator: Limitation rogramming Relerence

SYNTAX:
OUT := LIMIT(Min, IN, Max) // means:
OUT := MIN (MAX (IN, Min), Max)

"Max" is the upper limit value, "Min" the lower limit value for the result. If the
value IN exceeds the upper limit Max, then LIMIT returns Max. If IN is lower
than Min, then the result is Min.

IN and OUT can be any type.

LD a0
LIMIT 30 .
an
5T Varl
Fig.5-64. Operator LIMIT in IL
Result is 80
Operator LIMIT in ST

Varl:=LIMIT(30,90,80); // 80

IEC selection operator: Operator: Multiplexer

SYNTAX:
OUT := MUX(K, INO,..., INn) // means:
OUT := INk.

INO, ...,INn and OUT can be any type.

K has to be of types BYTE, WORD, DWORD, LWORD, SINT, USINT, INT,
UINT, DINT, UDINT, LINT or ULINT.

MUX selects the kth value from a set of values.
The first value is K=0.

If K is greater than the number of the other inputs (n), the final value is for-
warded (INn).

= To improve performance at runtime, only the expression preced-
ing IN, is calculated!

In contrast, all branches are calculated in the simulation.

LD 1]
M 30 .
40 .
50 .
&0 .
70 .
go
5T Varl
Fig.5-65: Operator MUX in IL
Result is 30

584/697 Bosch Rexroth AG DOK-IWORKS-IL2GPRO*V12-AP01-EN-P

Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

Programming Reference Operator MUX in ST

Varl:=MUX(0,30,40,50,60,70,80); // 30;

5.3.6 Relational Operators
Relational Operators, Overview

The following relational operators described in the IEC 61131-3 standard are
supported:

These are Boolean operators each comparing two inputs (first and second
operand).

GT IEC relational operator: greater than.

A Boolean operator with a result of TRUE if the first operand is greater than
the second.

The operands can be any of the following types:

e BOOL, BYTE, WORD, DWORD, LWORD,

® SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT,

® REAL, LREAL,

e TIME, LTIME, DATE, TIME_OF_DAY, DATE_AND_TIME and

e STRING.
LD 20
T 3n
5T Warl
Fig.5-66: Operator GT in IL

Resultis FALSE

GT
20 —— Varl
30

Fig.5-67: Operator GT in FBD
Operator GT in ST
VARL1 := 20 > 30 > 40 > 50 > 60 > 70; // FALSE

LT IEC relational operator: Less than.

A Boolean operator with the result TRUE if the first operand is less than the
second.

vAR

Servicio de Att. al Cliente

DOK-IWORKS-IL2GPRO*V12-AP01-EN-P Bosch Rexroth AG 585/697
Rexroth IndraWorks 12VRS Indralogic 2G PLC Programming System

LE

The operands can be any of the following types: ~ Frogramming Reference

e BOOL, BYTE, WORD, DWORD, LWORD,

e SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT,

e REAL, LREAL,

e TIME, LTIME, DATE, TIME_OF_DAY, DATE_AND_TIME and
e STRING.

LD Z0

LT 30

8T Warl
Fig.5-68: Operafor LT in IL

Result is TRUE

LT
20 —— Varl
30

Fig.5-69: Operator LT in FBD
QOperator LT in ST
VAR1 := 20 < 30; // TRUE

IEC relational operator: Less than or equal to.

A Boolean operator with the result TRUE if the first operand is less than or
equal to the second operand.

The operands can be any of the following types:

e BOOL, BYTE, WORD, DWORD, LWORD,

® SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT,

® REAL, LREAL,

e TIME, LTIME, DATE, TIME_OF_DAY, DATE_AND_TIME and
® STRING.

LD 20
LE 30
5T Varl
Fig.5-70: Operafor LE in IL
Resultis TRUE
LE
20 — Varl
30—
Fig.5-71: Operator LE in FBD

Operator LE in ST
VAR1 := 20 <= 30; // TRUE

